
Welcome to our first 2019 coding skills course!!
This etherpad is for you to take notes. The notes will be stored to the event page after/during
the workshop!
Use the chat window for chatting offline.

All links and notes will be shared through the event page:
 https://indico.mpi-cbg.de/event/135/timetable/#20190114

Please download and expand this zipfile:
 http://swcarpentry.github.io/shell-novice/data/data-shell.zip
Current course material: https://swcarpentry.github.io/shell-novice/

 /Users/wiegand
 /Users/love
 /home/danils
 cd
 /c/Users/blee
/Users/poser
/Useqq
rs/hpetzoldls -F

/Users/victoriayan
/Users/fberndt
/Users/dsaha/Desktop/data-shell
/Users/Johannes/Desktop/data-shell
/home/steinbac
/c/Users/vinograd/Documents/data-shell/data-shell
/c/Users/kellerp
/Users/dsaha/Desktop/data-shell
/home/rhaase/
/mnt/c/User/Cedric/Documents/GitHub/MPI-CPG/data_analysis/data-shell/data
/Users/guhr
/Users/janosch

* __...--~~~~~-._ _.-~~~~~--...__
* // `V' \\
* // | \\
* //__...--~~~~~~-._ | _.-~~~~~~--...__\\
* //__.....----~~~~._\ | /_.~~~~----.....__\\
*====================\\|//====================
* dwb `---`

lscd - change directory

Unix/Linux commands
http://cheatsheetworld.com/programming/unix-linux-cheat-sheet/

clear
CTRL-L

TAB - tab completion,
arrow up/down = recall last commands

mkdir - make directory

https://wiki.mpi-cbg.de/compdoc/Filenames

nana
yes = 0 bytes
Stephan Janosch: yes
blank text file, 0 bytes,
empty file, 0 bytes
yes 0 bytes

Use touch to check if you are allowed to write to a folder

rm - remove

sudo rm -rf / <<-- DON't do this. It will delete your whole file system. Also stuff of your
colleagues if the filerserver is mounted. ?? Actually, who wrote this here?

Day1, morning feedback:
 (green)
 - I liked the clear explanations of the commands to use in terminal. Very useful!
 - Alles is gute!
 - interactive learning,+2
 - very detailed explanations
 - everything
 - using terminal and command lines
 - certain shortcuts
 - never used touch or nano
 - already knew except for some flags like 'ls -a'
 - really good step-by-step intro
 - cp & mv can commands can change filenames
 - I learned some new bash commands
 - moving through directories
 - like the setup
 (red)
 - need more time
 - moving/copying files, +1
 - maybe a bit faster, +1
 - mv/cp a bit too fast
 - risk of overwriting files

*Day1 after lunch

ls th?sis*/*txt

*Pipes and Filters

wc -l [] count lines
sort [] sort file
head [] show the first lines of a file
tail [] show the last lines of a file; example: "tail -n 1 sorted-lengths.txt" gives you the last
line

cat text1.txt > overwrittenFile.txt
cat text1.txt > overwrittenFile.txt

cat text1.txt >> appendingFile.txt
cat text1.txt >> appendingFile.txt

CTRL a - go to beginning of line
CTRL e - go to end of line

• ls NENE*[AB].txt
* .
* ,i \
* ,' 8b \
* ,;o `8b \
* ; Y8. d8 \
*-+._ 8: d8. i:
* `:8 `8i `8
* `._Y8 8: ___
* `'---Yjdp "8m._
* ,"' _,o9 `m._
* | o8P" _.8d8P`-._
* :8' _oodP" ,dP'`-._
* `: dd8P' ,odP' do8'`.
* `-' ,o8P' ,o8P' ,8P`.
* `._dP' ddP' ,8P' ,..
* "`._ PP' ,8P' _d8'L..__
* `"-._88' .PP,'7 ,8.`-.._
* ``'"--"' | d8' :8i `i.
* l d8 d8 dP/
* \`' J8' `P'
* \ ,8F 87
* `.88 ,'
* `.,-' mh

OPEN MIULTIPLE FILES WITH NANO
open nano with: nano -F <filename>
CTRL+R opens a second, third, .. file
ALT+, and ALT+. allows you to switch between files

if you want to remember which cool things you did recently with the grep command run
history | grep grep

Day1, afternoon feedback:
 (green)
 - covered a good spread of functions and gave each the appropriate amount of attention
 - good overview, nice sessions today
 - how to organize files with wildcards, pipes and loops
 - peter's way of teaching
 - questions with 4 answers
 - so many tools, I learned today. Many of my crapy scripts are oboslete now because I can
do everything simply from the command line now
 - I liked the examples, +1
 - I liked it all, +1
 - got a good idea what can be done with tools, pipes, filters and loops
 - very in depth
 (red)
 - a bit fast, but I will review your detailed notes
 - too fast for me, need to spend more time on it individually
 - the afternoon is quite packed
 - not sure what is the most elegant way with real filesets
 - grep/find could have been introduced earlier
 - too slow to cover all material

*Day 2

*String manipulation with Bash

https://www.learnshell.org/de/Basic_String_Operations
https://gist.github.com/magnetikonline/90d6fe30fc247ef110a1

looking at the PATH and location of excecutable programs
echo $PATH
 to get a clean list of PATH use
 echo $PATH | tr ":" "\n"
one possibility of adding scripts to your path to make scripts excecutable from any directory
(Use an absolute path, not the relative)
 PATH=/PATH/TO/SCRIPT/script.sh:$PATH

 Book recommendation
 The Pragmatic Programmer https://en.wikipedia.org/wiki/The_Pragmatic_Programmer
 https://www.nceclusters.no/globalassets/filer/nce/diverse/the-pragmatic-programmer.pdf

please download this zip file

• https://swcarpentry.github.io/python-novice-inflammation/data/python-novice-
inflammation-data.zip

for obtaining the training data

for a later part in the lesson, please also download the following zip file with code:
 https://swcarpentry.github.io/python-novice-inflammation/code/python-novice-
inflammation-code.zip

 numercial python (numpy)
 import in python
 via
 import numpy

 print(data.shape)
 gives you rows and numbers of a .csv object inside python
 print(data[0:4, 0:10]) prints row 0-3 excluding the right hand number and row 0-9

 https://software-carpentry.org/lessons/index.html
 http://swcarpentry.github.io/python-novice-inflammation/

 day2 feedback morning session
 - green

• - recap from yesterday +1
• - python itself nicely explained +3
• - sample dataset nice
• - good expla. of functions
• - clear python3 explanation incl structure and packages
• - i realy like rows and cols expl.
• - good speed
• - looking forward of more command usage
• - very nice, getting more exited
• - got ideas about slicing data

- red

• - need more time for recapping things
• - inflammation data set is not self explaination
• - hard to know what to expect
• - maybe a bit faster
• - Peter should get a new laptop
• - looking for more advanced data analysis in afternoon
• - which we got started with a good python editor and workspaces/consoles: spyder or

pycharm
• - where to find more packages (anaconda [navigator] or google)
• - other ways for printing arrays (format)
• - emphasise where to find course material for personal recap
• - row/col confusion
• - mention potential pitfalls / common issues
•
•

*import numpy
*import matplotlib.pyplot
*
*data = numpy.loadtxt(fname="inflammation-01.csv",delimiter=",")
*
*fig = matplotlib.pyplot.figure(figsize=(10.0,3.0))
*
*axes1= fig.add_subplot(1,3,1)

*axes2= fig.add_subplot(1,3,2)
*axes3= fig.add_subplot(1,3,3)
*
*axes1.set_ylabel("average")
*axes1.plot(numpy.mean(data,axis=0))
*
*axes2.set_ylabel("max")
*axes2.plot(numpy.max(data,axis=0))
*
*axes3.set_ylabel("min")
*axes3.plot(numpy.min(data,axis=0))
*
*fig.tight_layout()
*
*matplotlib.pyplot.show()

result = 1
for i in range(0, 3):
 result = result * 5
print(result)

x = 1
y = 5
for i in range(0,3):
 x = y*x
print(x)

num_sqr = 5
power = 3
sqr_accum = num_sqr
for i in range(power-1):
 sqr_accum = sqr_accum*num_sqr
print sqr_accum

text = "Newton"
result = "";
for i in range(0, len(text)):
 result = result + text[len(text) - i - 1]
print(result)

word = "Newton"
newword = ""
for i in word:
 newword = i + newword
print(newword)

word = "Newton"
new = ""
for i in range(len(word)):
 new = new + word[-(i+1)]
print(new)

import glob
import numpy
import matplotlib.pyplot

filenames = glob.glob("inflammation-*.csv")
filenames = filenames[:3]

for f in filenames:
 data = numpy.loadtxt(fname=f,delimiter=",")

 fig = matplotlib.pyplot.figure(figsize=(10.0,3.0))

 axes1= fig.add_subplot(1,3,1)
 axes2= fig.add_subplot(1,3,2)
 axes3= fig.add_subplot(1,3,3)

 axes1.set_ylabel("average")
 axes1.plot(numpy.mean(data,axis=0))

 axes2.set_ylabel("max")
 axes2.plot(numpy.max(data,axis=0))

 axes3.set_ylabel("min")
 axes3.plot(numpy.min(data,axis=0))

 fig.tight_layout()

 matplotlib.pyplot.show()

data = numpy.loadtxt(fname="inflammation-01.csv", delimiter=",")

max_inflammation_0 = numpy.max(data,axis=0)[0]
max_inflammation_20 = numpy.max(data,axis=0)[20]

if max_inflammation_0 == 0 and max_inflammation_20 == 20:
 print("Suspicious looking data!")
elif numpy.sum(numpy.min(data,axis=0)) == 0:
 print("minima add up to 0")
else:
 print("Seems Ok!")

*fully self contained functions example
import glob
import matplotlib.pyplot

import numpy

def analyze(filename):
 """
 function to open <filename> (as .csv file) and plot the mean/max/min across axis 0
 """
 data = numpy.loadtxt(fname=filename,delimiter=",")

 fig = matplotlib.pyplot.figure(figsize=(10.0,3.0))

 axes1= fig.add_subplot(1,3,1)
 axes2= fig.add_subplot(1,3,2)
 axes3= fig.add_subplot(1,3,3)

 axes1.set_ylabel("average")
 axes1.plot(numpy.mean(data,axis=0))

 axes2.set_ylabel("max")
 axes2.plot(numpy.max(data,axis=0))

 axes3.set_ylabel("min")
 axes3.plot(numpy.min(data,axis=0))

 fig.tight_layout()

 matplotlib.pyplot.show()

def detect_problems(filename):
 """
 function to open <filename> (as .csv file) and check if the maxima do NOT follow a linear
function between 0 and 20.
 also to check whether the minima across axis 0 add up to 0, otherwise declare dataset as
OK
 """
 data = numpy.loadtxt(fname=filename, delimiter=",")

 max_inflammation_0 = numpy.max(data,axis=0)[0]
 max_inflammation_20 = numpy.max(data,axis=0)[20]

 if max_inflammation_0 == 0 and max_inflammation_20 == 20:
 print("Suspicious looking data!")
 elif numpy.sum(numpy.min(data,axis=0)) == 0:
 print("minima add up to 0")
 else:
 print("Seems Ok!")

for f in filenames:
 analyze(f)
 detect_problems(f)

help(analyze)

feedback day2 afternoon

• (red)
• - need more time to recap
• - exercises maybe after a break (freshness factor)
• - exercises maybe doing together once, then on your own (len was not mentioned)
• - examples were a bit far off
• - can you tell us more about refactoring?
• - difficult to distinguish lists versus strings
• (green)
• - I learned cool tricks
• - starting to feel the application of python
• - good note to structure code
• - got an overview what can be done with python
• - really cool how to combine different programs
• - just need more practise with loops
•

def outer (variable):
 result = (variable[0][0]) + (variable[-1][0])
 return result
print outer (["Byungho", "Tasinoivai", "Lee"])
BL

numbers = [1.5,2.3,0.7,-0.001,4.4]
total = 0.0
for num in numbers:
 assert num > 0., "input "+str(num)+" is negative. Stopping loop."
 total = total + num

print("sum is",total)

x1, y1

def normalize_rectangle(coordinates):
 """ normalize rectangle described by 4-integer tuple <coordinates>, so that it is at the
origin
 and 1 unit long along its longest axis
 input parameter <coordinates> is expected to be of the form (x0, y0, x1, y1)
 """
 #let's check the pre-conditions
 assert len(coordinates) == 4, 'Rectangles must contain 4 coordinates'
 x0, y0, x1, y1 = coordinates

 assert x0 < x1, "Invalid x coordinates"
 assert y0 < y1, "Invalid y coordinates"

 dx = x1 - x0
 dy = y1 - y0

 if dx > dy:
 #rectangle is rather wide
 scaled = float(dx) / dy
 upper_x, upper_y = 1.0, scaled
 else:
 #rectangel is rather tall
 scaled = float(dx) / dy
 upper_x, upper_y = scaled, 1.0

 #let's check the post-conditions
 assert 0 < upper_x <= 1.0, "calculated upper x coordinate failed"
 assert 0 < upper_y <= 1.0, "calculated upper y coordinate failed"

 return (0,0,upper_x,upper_y)

#Test-driven development:
(red) write a failing test
(green) add code that makes the test succeed
(refactor) restructure the code to your liking WITHOUT breaking the succeeding tests

def range_overlap(intervals):
 """ return common overlap among a set of (low, high] ranges
 <intervals> : list of tuples where each tuple has 2 entries (low, high)"""
 lowest = 0.
 highest = 1.0
 for (low, high) in intervals:
 lowest = max(lowest, low)
 highest = min(highest, high)

 return (lowest,highest)

assert range_overlap([(0., 1.)]) == (0., 1.)
assert range_overlap([(2,3), (2,4)]) == (2,3)
assert range_overlap([(0,1), (0,2), (-1,1)]) == (0,1)

#Test-driven development:
(red) write a failing test
(green) add code that makes the test succeed
(refactor) restructure the code to your liking WITHOUT breaking the succeeding tests

def range_overlap(intervals):
 """ return common overlap among a set of (low, high] ranges
 <intervals> : list of tuples where each tuple has 2 entries (low, high)"""
 low_ends = []
 for (low, _) in intervals:
 low_ends.append(low)
 hi_ends = []
 for (_, hi) in intervals:
 hi_ends.append(hi)

 lowest = min(low_ends)
 highest = max(hi_ends)
 for (low, high) in intervals:
 lowest = max(lowest, low)
 highest = min(highest, high)

 return (lowest,highest)

assert range_overlap([(0., 1.)]) == (0., 1.)
assert range_overlap([(2,3), (2,4)]) == (2,3)
assert range_overlap([(0,1), (0,2), (-1,1)]) == (0,1)

>>> 3//0.1
29.0
>>> 3/0.1
30.0

Why??

feedback day3 morning

• (red)
• - examples take too long, wish we can cover more examples
• - still unclear about how to do TDD, the best way to write assertions? (just need

practise)
• - more practical examples
• - pretty complicated for me (homework?)
• - too fast, too much typing for defensive programming (don't make people copy code,

but explain step-by-step)
• (green)
• - very nice access to defensive programming
• - 1st time TDD!
• - very insightful TDD, noone ever has taught me this
• - it looks easy until I do it myself
• - very useful, mostly TDD
• - defensive programming, assert
• - liked the exercises, +1
• - liked finding errors
• - very clear explanation
• - nice explanation
• - improved practising
•
•
•

import sys
import numpy

def print_means(filename):

 data = numpy.loadtxt(filename, delimiter=',')
 for m in numpy.mean(data,axis=1):
 print(m)

#print(sys.version)

def main():
 script = sys.argv[0]
 action = sys.argv[1]

 if action != '--min' and action != '--mean':
 print("usage: python "+script+" <--min|--mean> [file ...]")
 sys.exit(1)
 filenames = sys.argv[2:]

 for fname in filenames:
 print(fname)
 data = numpy.loadtxt(fname, delimiter=',')
 values = None
 if action == '--min':
 values = numpy.min(data,axis=1)
 elif action == '--mean':
 values = numpy.mean(data,axis=1)

 for m in values:
 print(m)

if __name__ == '__main__':
 main()

https://www.gnu.org/software/diffutils/manual/diffutils.html < --- search for 'Myers'
http://dx.doi.org/10.1007/BF01840446

GIT reference:

 http://swcarpentry.github.io/git-novice/

 feedback day3 afternoon

• (red)
• - more explanations of the motivation or overview before jumping into examples
• - more practical examples
• - fatal push/pull, +1
• - confusion when running python from the command line
• - intro/motivation what a repo is
• - explain what advantages a repo has over manual versioning
• - more seperation between beginner & advanced level
•
• (green)

• - very clearly explained
• - good level of exercise and theory, +1
• - good interaction
• - nice fast comprehensive crash course on git
• - saved time and activating energy
• - finally understood so many command line things and great tricks, +1
• - very informative, +2
• - good sweets, +1
• - course could be longer
• - git is super useful, +4
• - great course, +2
• - please run a more advanced one
• - how to add collaborators (train collaboration with examples?)
• - nice to see the workflow

