
Update README.md

gohr authored 30 minutes ago

README.md 54.3 KB

101 Bash Introduction

• Offered by the Scientific Computing Facility @ CBG.

• Contact: scicomp@mpi-cbg.de

• Learning objectives

◦ Navigate around the Unix file system

◦ Differentiate between full and relative paths

◦ List files in a directory

◦ Copy, remove and move files

◦ Implement tab completion when writing paths

◦ Use of the asterisk * wildcard to select multiple items

◦ List a few shortcuts

◦ View the contents of a file

◦ Create a new file using the Vim text editor

◦ Execute basic shortcuts in the Vim text editor

◦ Search for characters or patterns in a text file using the grep command

◦ Write to and append a file using output redirection

◦ Use the pipe (|) character to chain together commands

• For whom and which prerequisites

◦ CBG/CSBD affiliated with computer

◦ Prior Shell knowledge unnecessary

• Course format

◦ Self-study

▪ Students read material and do exercises themselves

▪ In case of questions or wish to discuss particular points, write an Email to schedule a Zoom chat with us:

scicomp@mpi-cbg.de

◦ Online or class-room course

▪ Offered on demand

▪ Minimum number of participants: 5

▪ Write us an Email to evince your interest: scicomp@mpi-cbg.de

• Installation before class on your computer

◦ Mac/Linux users: No installation required

◦ Windows users: Install Windows Subsystem for Linux Details

1. open an admin CMD

2. wsl --install -d ubuntu

3. wcl --set-version-default 2

• Origin of material

◦ Taken and partly adapted from the teaching material of the Harvard Chan Bioinformatics Core Training.

Starting with the shell

Let's look at what is inside the data folder and explore further. First instead of clicking on the folder name to open it and

look at its contents, we have to change the folder we are in. When working with any programming tools, folders are

9210b866

https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/commit/9210b866db2bd8af7b96e9ca10d8c8742bcfbe8e
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/commit/9210b866db2bd8af7b96e9ca10d8c8742bcfbe8e
https://git.mpi-cbg.de/gohr
https://git.mpi-cbg.de/gohr
https://www.mpi-cbg.de/research/scientific-cores-support/scientific-services/scientific-computing-facility
https://www.mpi-cbg.de/research/scientific-cores-support/scientific-services/scientific-computing-facility
https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.microsoft.com/en-us/windows/wsl/install
https://github.com/hbctraining/Intro-to-shell-flipped
https://github.com/hbctraining/Intro-to-shell-flipped
https://bioinformatics.sph.harvard.edu/training#for-hsci-and-on-quad-hms-researchers
https://bioinformatics.sph.harvard.edu/training#for-hsci-and-on-quad-hms-researchers

called directories. We will be using folder and directory interchangeably moving forward.

To look inside the unix_lesson directory, we need to change which directory we are in. To do this we can use the cd

command, which stands for "change directory".

$ cd unix_lesson

Did you notice a change in your command prompt? The "~" symbol from before should have been replaced by the string

unix_lesson . This means that our cd command ran successfully and we are now in the new directory. Let's see what is

in here by listing the contents:

$ ls

You should see:

genomics_data other raw_fastq README.txt reference_data

Arguments

There are five items listed when you run ls , but what types of files are they, or are they directories or files?

We can modify the default behavior of ls with one or more "arguments" to get more information.

$ ls -F

genomics_data/ other/ raw_fastq/ README.txt reference_data/

Anything with a "/" after its name is a directory. Things with an asterisk "*" after them are programs. If there are no

"decorations" after the name, it's a normal text file.

You can also use the argument -l to show the directory contents in a long-listing format that provides a lot more

information:

$ ls -l

total 124

drwxrwsr-x 2 mp298 mp298 78 Sep 30 10:47 genomics_data

drwxrwsr-x 6 mp298 mp298 107 Sep 30 10:47 other

drwxrwsr-x 2 mp298 mp298 228 Sep 30 10:47 raw_fastq

-rw-rw-r-- 1 mp298 mp298 377 Sep 30 10:47 README.txt

drwxrwsr-x 2 mp298 mp298 238 Sep 30 10:47 reference_data

Each line of output represents a file or a directory. The directory lines start with d . If you want to combine the 2

arguments -l and -F , you can do so by saying the following:

ls -lF

Do you see the modification in the output?

▸ Explanation

Tip - All commands are essentially programs that are able to perform specific, commonly-used tasks.

Most commands will take additional arguments that control their behavior, some of them will take a file or directory

name as input. How do we know what the available arguments that go with a particular command are? Most commonly

used shell commands have a manual available in the shell. You can access the manual using the man command. Let's try

this command with ls :

$ man ls

This will open the manual page for ls and you will lose the command prompt. It will bring you to a so-called "buffer"

page, a page you can navigate with your mouse or if you want to use your keyboard we have listed some basic key

strokes:

• 'spacebar' to go forward

• 'b' to go backward

• Up or down arrows to go forward or backward, respectively

To get out of the man "buffer" page and to be able to type commands again on the command prompt, press

the q key!

Exercise

• Open up the manual page for the find command. Skim through some of the information.

◦ Do you think you might be able to learn this much information about the very many command by heart?

◦ Do you think this format of information display is useful for you?

• Quit the man buffer and come back to your command prompt.

Tip - Shell commands can get extremely complicated. No one can possibly learn all of these arguments, of course.

So you will probably find yourself referring to the manual page frequently.

Tip - If the manual page within the Terminal is hard to read and traverse, the manual exists online too. Use your

web searching powers to get it! In addition to the arguments, you can also find good examples online; Google is

your friend.

The Unix directory file structure (a.k.a. where am I?)

Let's practice moving around a bit. Let's go into the raw_fastq directory and see what is in there.

$ cd raw_fastq/

$ ls -l

Great, we have now traversed some sub-directories, but where are we in the context of our pre-designated "home"

directory that contains the unix_lesson directory?!

The "root" directory!

Like on any computer you have used before, the file structure within a Unix/Linux system is hierarchical, like an upside

down tree with the "/" directory, called "root" as the starting point of this tree-like structure:

Tip - Yes, the root folder's actual name is just / (a forward slash).

That / or root is the 'top' level.

When you log in to a remote computer you land on one of the branches of that tree, i.e. your pre-designated "home"

directory that usually has your login name as its name (e.g. /home/rsk27).

Tip - On mac OS, which is a UNIX-based OS, the root level is also "/".

Tip - On a windows OS, it is drive specific; "C:" is considered the default root, but it changes to "D:/", if you are on

that drive.

Paths

https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/directory_structure.png
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/directory_structure.png

Now let's learn more about the "addresses" of directories, called "path" and move around the file system.

Let's check to see what directory we are in. The command prompt tells us which directory we are in, but it doesn't give

information about where the raw_fastq directory is with respect to our "home" directory or the / directory.

The command to check our current location is pwd , this command does not take any arguments and it returns the path

or address of your present working directory (the folder you are in currently).

$ pwd

In the output here, each folder is separated from its "parent" or "child" folder by a "/", and the output starts with the root

/ directory. So, you are now able to determine the location of raw_fastq directory relative to the root directory!

But which is your pre-designated home folder? No matter where you have navigated to in the file system, just typing in

cd will bring you to your home directory.

$ cd

What is your present working directory now?

$ pwd

This should now display a shorter string of directories starting with root. This is the full address to your home directory,

also referred to as "full path". The "full" here refers to the fact that the path starts with the root, which

means you know which branch of the tree you are on in reference to the root.

Take a look at your command prompt now, does it show you the name of this directory (your username?)?

No, it doesn't. Instead of the directory name it shows you a ~ .

Why is this so?

This is because ~ = full path to home directory for the user.

Can we just type ~ instead of /home/username ?

Yes, we can!

Using paths with commands

You can do a lot more with the idea of stringing together parent/child directories. Let's say we want to look at the

contents of the raw_fastq folder, but do it from our current directory (the home directory. We can use the list command

and follow it up with the path to the folder we want to list!

$ cd

$ ls -l ~/unix_lesson/raw_fastq

Now, what if we wanted to change directories from ~ (home) to raw_fastq in a single step?

$ cd ~/unix_lesson/raw_fastq

Voila! You have moved 2 levels of directories in one command.

What if we want to move back up and out of the raw_fastq directory? Can we just type cd unix_lesson ? Try it and see

what happens.

Unfortunately, that won't work because when you say cd unix_lesson , shell is looking for a folder called unix_lesson

within your current directory, i.e. raw_fastq .

Can you think of an alternative?

You can use the full path to unix_lesson!

$ cd ~/unix_lesson

Exercises

1. First, move to your home directory.

2. Then, list the contents of the genomics_data directory that is within the unix_lesson directory.

Tab completion

Typing out full directory names can be time-consuming and error-prone. One way to avoid that is to use tab

completion. The tab key is located on the left side of your keyboard, right above the caps lock key. When you start

typing out the first few characters of a directory name, then hit the tab key, Shell will try to fill in the rest of the

directory name.

For example, first type cd to get back to your home directly, then type cd uni , followed by pressing the tab key:

$ cd

$ cd uni<tab>

The shell will fill in the rest of the directory name for unix_lesson .

Now, let's go into raw_fastq , then type ls Mov10_oe_ , followed by pressing the tab key once:

$ cd raw_fastq/

$ ls Mov10_oe_<tab>

Nothing happens!!

The reason is that there are multiple files in the raw_fastq directory that start with Mov10_oe_ . As a result, shell does

not know which one to fill in. When you hit tab a second time again, the shell will then list all the possible choices.

$ ls Mov10_oe_<tab><tab>

Now you can select the one you are interested in listed, and enter the number and hit tab again to fill in the complete

name of the file.

$ ls Mov10_oe_1<tab>

NOTE: Tab completion can also fill in the names of commands. For example, enter e<tab><tab> . You will see the

name of every command that starts with an e . One of those is echo . If you enter ech<tab> , you will see that tab

completion works.

Tab completion is your friend! It helps prevent spelling mistakes, and speeds up the process of typing in the full

command. We encourage you to use this when working on the command line.

Relative paths

We have talked about full paths so far, but there is a way to specify paths to folders and files without having to worry

about the root directory. And you have used this before when we were learning about the cd command.

Let's change directories back to our home directory, and once more change directories from ~ (home) to raw_fastq in a

single step. (Feel free to use your tab-completion to complete your path!)

$ cd

$ cd unix_lesson/raw_fastq

This time we are not using the ~/ before unix_lesson . In this case we are using a relative path, relative to our current

location - wherein we know that unix_lesson is a child folder in our home folder, and the raw_fastq folder is within

unix_lesson .

Previously we had used the following:

$ cd ~/unix_lesson/raw_fastq

There is also a handy shortcut for the relative path to a parent directory, 2 periods .. . Let's say we wanted to move

from the raw_fastq folder to its parent folder.

cd ..

You should now be in the unix_lesson directory (check command prompt or run pwd).

You will be learning a little more about the .. shortcut later. Can you think of an example when this shortcut to

the parent directory won't work?

▸ Answer

When using relative paths, you might need to check what the branches are downstream of the folder you are in. There is

a really handy command (tree) that can help you see the structure of any directory.

$ tree

If you are aware of the directory structure, you can string together as long a list of directories as you like using either

relative or full paths.

Synopsis of Full versus Relative paths

A full path always starts with a / , a relative path does not.

A relative path is like getting directions from someone on the street. They tell you to "go right at the Stop sign, and then

turn left on Main Street". That works great if you're standing there together, but not so well if you're trying to tell

someone how to get there from another country. A full path is like GPS coordinates. It tells you exactly where something

is no matter where you are right now.

You can usually use either a full path or a relative path depending on what is most convenient. If we are in the home

directory, it is more convenient to just enter the relative path since it involves less typing.

Over time, it will become easier for you to keep a mental note of the structure of the directories that you are using and

how to quickly navigate among them.

Copying, creating, moving and removing data

Now we can move around within the directory structure using the command line. But what if we want to do things like

copy files or move them from one directory to another, rename them?

Let's move into the raw_fastq directory, this contains some fastq files which are the output of sequencing.

cd ~/unix_lesson/raw_fastq

Tip - These files are referred to as "raw" data since it has not been changed or analyzed after being generated.

Copying

Let's use the copy (cp) command to make a copy of one of the files in this folder, Mov10_oe_1.subset.fq , and call the

copied file Mov10_oe_1.subset-copy.fq . The copy command has the following syntax:

cp path/to/item-being-copied path/to/new-copied-item

In this case the files are in our current directory, so we just have to specify the name of the file being copied, followed by

whatever we want to call the newly copied file.

$ cp Mov10_oe_1.subset.fq Mov10_oe_1.subset-copy.fq

$ ls -l

The copy command can also be used for copying over whole directories, but the -r argument has to be added after the

cp command. The -r stands for recursively copy everything from the directory and its sub-directories". We used it

earlier when we copied over the unix_lesson directory to our home directories.

Creating

Next, let's create a directory called fastq_backup and we can move the copy of the fastq file into that directory.

The mkdir command is used to make a directory, syntax: mkdir name-of-folder-to-be-created .

https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/blob/main/README.md
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/blob/main/README.md
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/blob/main/README.md
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/blob/main/README.md
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/blob/main/README.md
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/blob/main/README.md
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/blob/main/README.md

$ mkdir fastq_backup

Tip - File/directory/program names with spaces in them do not work well in Unix, use characters like hyphens or

underscores instead. Using underscores instead of spaces is called "snake_case". Alternatively, some people

choose to skip spaces and rather just capitalize the first letter of each new word (i.e. MyNewFile). This alternative

technique is called "CamelCase".

Moving

We can now move our copied fastq file in to the new directory. We can move files around using the move command, mv ,

syntax:

mv path/to/item-being-moved path/to/destination

In this case we can use relative paths and just type the name of the file and folder.

$ mv Mov10_oe_1.subset-copy.fq fastq_backup

Let's check if the move command worked like we wanted:

$ ls -l fastq_backup

Renaming

The mv command has a second functionality, it is what you would use to rename files too. The syntax is identical to

when we used mv for moving, but this time instead of giving a directory as its destination, we just give a new name as

its destination.

Let's try out this functionality!

The name Mov10_oe_1.subset-copy.fq is not very informative, we want to make sure that we have the word "backup" in

it so we don't accidentally delete it.

$ cd fastq_backup

$ mv Mov10_oe_1.subset-copy.fq Mov10_oe_1.subset-backup.fq

$ ls

Tip - You can use move to move a file and rename it at the same time!

Important notes about mv :

• When using mv , shell will not ask if you are sure that you want to "replace existing file" or similar unless you use the

-i option.

• Once replaced, it is not possible to get the replaced file back!

Removing

We find out that we did not need to create backups of our fastq files manually as backups were generated by our

collaborator; in the interest of saving space on the cluster, we want to delete the contents of the fastq-backup folder

and the folder itself.

$ rm Mov10_oe_1.subset-backup.fq

Important notes about rm

• rm permanently removes/deletes the file/folder.

• There is no concept of "Trash" or "Recycle Bin" on the command-line. When you use rm to remove/delete they're

really gone.

• Be careful with this command!

• You can use the -i argument if you want it to ask before removing, rm -i file-name .

Let's delete the fastq_backup folder too. First, we'll have to navigate our way to the parent directory (we can't delete the

folder we are currently in/using).

$ cd ..

$ rm fastq_backup

Did that work? Did you get an error?

▸ Explanation

$ rm -ri fastq_backup

• -r : recursive, commonly used as an option when working with directories, e.g. with cp .

• -i : prompt before every removal.

Exercise

1. Create a new folder in unix_lesson called selected_fastq

2. Copy over the Irrel_kd_2.subset.fq and Mov10_oe_2.subset.fq from raw_fastq to the ~/unix_lesson/selected_fastq

folder

3. Rename the selected_fastq folder and call it exercise1

Saving time with wildcards and other shortcuts

Wild cards

The "*" wildcard:

Navigate to the ~/unix_lesson/raw_fastq directory. This directory contains FASTQ files from a next-generation

sequencing dataset.

The "*" character is a shortcut for "everything". Thus, if you enter ls * , you will see all of the contents of a given

directory. Now try this command:

$ ls *fq

This lists every file that ends with a fq . Try this command:

$ ls /usr/bin/*.sh

This lists every file in /usr/bin directory that ends in the characters .sh . "*" can be placed anywhere in your pattern.

For example:

$ ls Mov10*fq

This lists only the files that begin with 'Mov10' and end with fq .

So how does this actually work? The Shell (bash) considers an asterisk "*" to be a wildcard character that can match one

or more occurrences of any character, including no character.

Tip - An asterisk/star is only one of the many wildcards in Unix, but this is the most powerful one and we will be

using this one the most for our exercises.

The "?" wildcard:

Another wildcard that is sometimes helpful is ? . ? is similar to * except that it is a placeholder for exactly one position.

Recall that * can represent any number of following positions, including no positions. To highlight this distinction lets

look at a few examples. First, try this command:

ls /bin/d*

This will display all files in /bin/ that start with "d" regardless of length. However, if you only wanted the things in

/bin/ that start with "d" and are two characters long then you can use:

ls /bin/d?

Lastly, you can chain together multiple "?" marks to help specify a length. In the example below, you would be looking

for all things in /bin/ that start with a "d" and have a name length of three characters.

ls /bin/d??

Exercise

Do each of the following using a single ls command without navigating to a different directory.

1. List all of the files in /bin that start with the letter 'c'

2. List all of the files in /bin that contain the letter 'a'

3. List all of the files in /bin that end with the letter 'o'

4. BONUS: Using one command to list all of the files in /bin that contain either 'a' or 'c'. (Hint: you might need to use a

different wildcard here. Refer to this post for some ideas.)

▸ Answers

Shortcuts

There are some very useful shortcuts that you should also know about.

Home directory or "~"

Dealing with the home directory is very common. In shell, the tilde character, "~", is a shortcut for your home directory.

Let's first navigate to the raw_fastq directory (try to use tab completion here!):

$ cd

$ cd unix_lesson/raw_fastq

Then enter the command:

$ ls ~

This prints the contents of your home directory, without you having to type the full path. This is because the tilde "~" is

equivalent to "/home/username", as we had mentioned in the previous lesson.

Parent directory or ".."

Another shortcut you encountered in the previous lesson is "..":

$ ls ..

The shortcut .. always refers to the parent directory of whatever directory you are in currently. So, ls .. will print the

contents of unix_lesson . You can also chain these .. together, separated by / :

$ ls ../..

This prints the contents of /home/username , which is two levels above your current directory (your home directory).

Current directory or "."

Finally, the special directory . always refers to your current directory. So, ls and ls . will do the same thing - they

print the contents of the current directory. This may seem like a useless shortcut, but recall that we used it earlier when

we copied over the data to our home directory.

To summarize, the commands ls ~ , ls ~/. , and ls /home/username all do exactly the same thing. These shortcuts can

be convenient when you navigate through directories!

Command History

You can easily access previous commands by hitting the up arrow key on your keyboard, this way you can step

backwards through your command history. On the other hand, the down arrow key takes you forward in the command

history.

Try it out! While on the command prompt hit the up arrow a few times, and then hit the down arrow a few

https://www.putorius.net/standard-wildcards-globbing-patterns-in.html
https://www.putorius.net/standard-wildcards-globbing-patterns-in.html

times until you are back to where you started.

You can also review your recent commands with the history command. Just enter:

$ history

You should see a numbered list of commands, including the history command you just ran!

Only a certain number of commands can be stored and displayed with the history command by default but you can

increase or decrease it to a different number. It is outside the scope of this workshop, but feel free to look it up after

class.

NOTE: So far we have only run very short commands that have very few or no arguments. It would be faster to

just retype it than to check the history. However, as you start to run analyses on the command-line you will find

that the commands are longer and more complex, and the history command will be very useful then!

Cancel a command

Sometimes as you enter a command, you realize that you don't want to continue or run the current line. Instead of

deleting everything you have entered (which could be very long), you could quickly cancel the current line and start a

fresh prompt with Ctrl + C.

$ # Run some random words, then hit "Ctrl + C". Observe what happens

Other handy command-related shortcuts

• Ctrl + A will bring you to the start of the command you are writing.

• Ctrl + E will bring you to the end of the command.

Exercise

1. Checking the output of the history command, how many commands have you typed in so far?

2. Use the up arrow key to check the command you typed before the history command. What is it? Does it make

sense?

3. Type several random characters on the command prompt. Can you bring the cursor to the start with Ctrl + A? Next,

can you bring the cursor to the end with Ctrl + E? Finally, what happens when you use Ctrl + C?

Examining Files

We now know how to move around the file system and look at the contents of directories, but how do we look at the

contents of files? On your laptop, viewing a file is as simple as finding it in the file explorer window and double clicking to

open it. As you will have noticed so far, the point and click of the mouse is not very useful when working on the

command-line. Instead we will need to equip ourseleves with some helpful commands.

cat command

The easiest way to examine a file is to just print out all of its contents using the command cat . We can test this out by

printing the contents of ~/unix_lesson/other/sequences.fa . Enter the command followed by the filename, including the

path when necessary:

$ cat ~/unix_lesson/other/sequences.fa

The cat command prints out the all the contents of sequences.fa to the screen.

cat stands for catenate; it has many uses and printing the contents of a files onto the terminal is one of them.

What does this file contain?

>SRR014849.1 EIXKN4201CFU84 length=93

GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGGGTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAAAGCAATGCCAATA

>gi|340780744|ref|NC_015850.1| Acidithiobacillus caldus SM-1 chromosome, complete genome

ATGAGTAGTCATTCAGCGCCGACAGCGTTGCAAGATGGAGCCGCGCTGTGGTCCGCCCTATGCGTCCAACTGGAGCTCGTCACGAG

TCCGCAGCAGTTCAATACCTGGCTGCGGCCCCTGCGTGGCGAATTGCAGGGTCATGAGCTGCGCCTGCTCGCCCCCAATCCCTTCG

TCCGCGACTGGGTGCGTGAACGCATGGCCGAACTCGTCAAGGAACAGCTGCAGCGGATCGCTCCGGGTTTTGAGCTGGTCTTCGCT

CTGGACGAAGAGGCAGCAGCGGCGACATCGGCACCGACCGCGAGCATTGCGCCCGAGCGCAGCAGCGCACCCGGTGGTCACCGCCT

CAACCCAGCCTTCAACTTCCAGTCCTACGTCGAAGGGAAGTCCAATCAGCTCGCCCTGGCGGCAGCCCGCCAGGTTGCCCAGCATC

CAGGCAAATCCTACAACCCACTGTACATTTATGGTGGTGTGGGCCTCGGCAAGACGCACCTCATGCAGGCCGTGGGCAACGATATC

CTGCAGCGGCAACCCGAGGCCAAGGTGCTCTATATCAGCTCCGAAGGCTTCATCATGGATATGGTGCGCTCGCTGCAACACAATAC

CATCAACGACTTCAAACAGCGTTATCGCAAGCTGGACGCCCTGCTCATCGACGACATCCAGTTCTTTGCGGGCAAGGACCGCACCC

>gi|129295|sp|P01013|OVAX_CHICK GENE X PROTEIN (OVALBUMIN-RELATED)

QIKDLLVSSSTDLDTTLVLVNAIYFKGMWKTAFNAEDTREMPFHVTKQESKPVQMMCMNNSFNVATLPAE

less command

cat is a terrific command, but when the file is really big, it can be annoying to use. In practice, when you are running

your analyses on the command-line you will most likely be dealing with large files. In our case, we have FASTQ files. Let's

take a look at the list of raw_fastq files and add the -h modifier to see how big the files are.

$ ls -lh ~/unix_lesson/raw_fastq

The ls command has a modifier -h when paired with -l , will list the files and also print sizes of files in human

readable format.

In the fourth column you wll see the size of each of these files, and you can see they are quite large, so we probably do

not want to use the cat command to look at them. Instead, we can use the less command.

Move into our raw_fastq directory and enter the following command:

$ less Mov10_oe_1.subset.fq

Rather than printing to screen, the less command opens the file in a new buffer allowing you to navigate through it.

Does this look familiar? You might remember encountering a similar interface when you used the man command. This is

because man is using the less command to open up the documentation files! The keys used to move around the file are

identical to the man command. Below we have listed some additional shortcut keys for naviagting through your file when

using less .

Shortcuts for less

key action

SPACE to go forward

b to go backwards

g to go to the beginning

G to go to the end

q to quit

Use the shortcut keys to move through your FASTQ file, we will explore these files in more detail later in the workshop.

Searching files with less

less also gives you a way of searching through files.

Just type in / to begin a search, you will see that the / will show up at the bottom of the less buffer. Now, enter the

name of the string of characters you would like to search for and hit the enter key. The interface will move to show you

the location where that string is found, and highlight the string. If you hit / then ENTER , less will just repeat the

previous search.

less searches from the current location and works its way forward. For instance, let's search for the sequence CAGAAT in

our file S1WTgex_S1_L001_R1_001.fastq in folder raw_fastq . You can see that we go right to that sequence and can see

what it looks like.

If you start a search when you are at the end of the file, less will not find it. You need to go to the beginning of the file

and search.

To exit hit q . There are other more sophisticated commands to search through your file (and we will cover these later),

but this shortcut search is useful for a quick scan through. You can think of it as being analagous to using the Ctrl-F

keystroke when searching on your laptop.

head and tail commands

There's another way that we can look at files, and just look at part of them. In particular, if we just want to see the

beginning or end of the file to see how it's formatted.

The commands are head and tail and they just let you look at the beginning and end of a file respectively.

$ head S1WTgex_S1_L001_R1_001.fastq

$ tail S1WTgex_S1_L001_R1_001.fastq

By default, the first or last 10 lines will be printed to screen. The -n option can be used with either of these commands

to specify the number n lines of a file to display. For example, let's print the first/last line of the file:

$ head -n 1 S1WTgex_S1_L001_R1_001.fastq

$ tail -n 1 S1WTgex_S1_L001_R1_001.fastq

Exercise

1. Change directories into genomics_data . You can do this using a full or relative path.

2. Use the less command to open up the file mouse_riboprotein_genes.tab .

3. Search for the string chr11 ; you'll see all instances in the file highlighted.

4. Staying in the less buffer, use the shortcut to get to the end of the file. Report the three highlighted lines at the end

of the file where you see chr11 highlighted.

5. Exit the less buffer and come back to the command prompt.

6. Print to screen the last 5 lines of the file mouse_riboprotein_genes.tab . Report what you see as the output within the

Terminal.

Writing files

We've been able to do a lot of work with files that already exist, but what if we want to write and/or create our own files?

Obviously, we're not going to type in sequence information for a FASTA file, but you'll see as we go that there are a lot of

situations in which we would need to write/create a file or edit an existing file.

In order to create or edit files we will need to use a text editor. When we say, "text editor," we really do mean "text":

these editors can only work with plain character data, not tables, images, or any other media. The types of text editors

available can generally be grouped into two categories: graphical user interface (GUI) text editors and command-

line editors.

GUI text editors

A GUI is an interface that has buttons and menus that you can click on to issue commands to the computer and you can

move about the interface just by pointing and clicking. You might be familar with GUI text editors, such as BBEdit,

Sublime, and Notepad++, which allow you to write and edit plain text documents. These editors often have features to

easily search text, extract text, and highlight syntax from multiple programming languages. They are great tools, but

since they are 'point-and-click', we cannot efficiently use them from the command line.

Command-line editors

When working remotely, we need a text editor that functions from the command line interface. With command-line

editors you must navigate the interface using the arrow keys and shortcuts, since you do not have the option to 'point-

and-click'. Some popular editors include Emacs, Vim, or a graphical editor such as Gedit. These are editors which are

generally available for use on high-performance compute clusters. There are also simpler editors available for use on the

cluster (e.g. nano), but tend to have limited functionality.

Introduction to Vim

To write and edit files, we're going to use a text editor called 'Vim'. Vim is a very powerful text editor, and it offers

extensive text editing options. However, in this introduction we are going to focus on exploring some of the more

basic functions.

http://www.barebones.com/products/bbedit/
http://www.barebones.com/products/bbedit/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/
http://www.vim.org/
http://www.vim.org/
http://projects.gnome.org/gedit/
http://projects.gnome.org/gedit/
http://www.nano-editor.org/
http://www.nano-editor.org/

How do I keep track of all these shortcuts in Vim?

To help you remember some of the keyboard shortcuts that are introduced below and to allow you to explore

additional functionality on your own, we have compiled a cheatsheet linked here. Download it to your computer, it

is a useful resource to have open while using Vim.

Vim Interface

You can create a document by calling a text editor (in our case vim) and providing the name of the document you wish

to create.

Change directories to the ~/unix_lesson folder and create a new folder vim . Change into that folder vim and create a

test file called draft.txt using the vim command:

$ cd ~/unix_lesson

$ mkdir vim

$ cd vim

$ vim draft.txt

Note the "draft.txt" [New File] typed at the bottom left-hand section of the screen. This tells you that you

just created a new file in vim.

Vim Modes

Vim has two basic modes that will allow you to create documents and edit your text:

• command mode (default mode): will allow you to save and quit the program (and execute other more advanced

commands).

• insert (or edit) mode: will allow you to write and edit text

Upon creation of a file, vim is automatically in command mode. Let's change to insert mode by typing i . Note the

--INSERT-- at the bottom left hand of the screen. Now type in a few lines of text:

After you have finished typing, press esc to enter command mode.

https://github.com/hbctraining/In-depth-NGS-Data-Analysis-Course/blob/master/resources/VI_CommandReference.pdf
https://github.com/hbctraining/In-depth-NGS-Data-Analysis-Course/blob/master/resources/VI_CommandReference.pdf
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_cheatsheet.png
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_cheatsheet.png
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_insert.png
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_insert.png

Note the --INSERT-- has now disappeared from the bottom of the screen.

Review of Vim modes

key action

i insert mode - to write and edit text

esc command mode - to issue commands / shortcuts

Saving and Quitting

To "write to file" or save the modifications made to the file, type :w when in command mode. You can see the

commands you type in the bottom left-hand corner of the screen.

After you have saved the file, the total number of lines and characters in the file will print out at the bottom left-hand

section of the screen.

Alternatively, we can write to file (save changes) and quit all at once by typing :wq . Now, you should have exited

vim and returned back to your command prompt.

To edit the newly created draft.txt file, you can open it again with vim: vim draft.txt . First, change to insert mode

and type a few additional lines (you can move around the lines using the arrows on the keyboard). This time we decide

to quit without saving by going into command mode by pressing the esc key, and then typing :q! .

https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_save.png
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_save.png
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_postsave.png
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_postsave.png

Review of saving and quitting

key (in command mode) action

:w to write to file (save)

:wq to write to file and quit

:q! to quit without saving

Shortcuts in Vim

While we cannot point and click to navigate the document, we can use the arrow keys to move around. However,

navigating with arrow keys can be very slow, so Vim has shortcuts (which are completely unintuitive, but very useful as

you get used to them over time).

Create a new file called spider.txt using vim . Go into insert mode and enter the text as shown below in the

screenshot:

Once you have finished typing, you can display line numbers by changing to command mode and then typing the

:set number command. Later, if you choose to remove the line numbers you can reset it with :set nonumber .

https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_quit.png
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_quit.png
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_spider.png
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_spider.png

key (in command mode) action

:set number to number lines

:set nonumber to remove line numbers

Save the document. Check to see what mode you are currently in. While in command mode, try moving around the

file spider.txt and familarizing yourself with some of these shortcuts!

Navigating around the file

key (in command mode) action

gg to move to top of file

G to move to bottom of file

$ to move to end of line

0 to move to beginning of line

w to move to next word

b to move to previous word

Practice some of the editing shortcuts, then quit the document without saving any changes.

Editing the file

key (in command mode) action

dw to delete word

dd to delete line

u to undo

Ctrl + r to redo

/pattern to search for a pattern (n/N to move to next/previous match)

:%s/search/replace/g to search for a pattern and replace for all occurences

Exercise

We have covered some basic commands in vim, but practice is key for getting comfortable with the program. Let's

practice what we just learned in a brief challenge.

1. Open spider.txt , and delete the word "water" from line #2.

https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_spider_number.png
https://git.mpi-cbg.de/scicomp/teaching/bash_101/-/raw/main/img/vim_spider_number.png

2. Quit without saving.

3. Open spider.txt again, and replace every occurrence of "spider" with "unicorn".

4. Delete: "Down came the rain."

5. Save the file.

6. Undo your previous deletion.

7. Redo your previous deletion.

8. Delete the first and last words from each of the lines.

9. Save the file.

10. Open up the file and copy and paste the contents to a text editor on your local laptop to submit as homework.

Searching files with grep command

We went over how to search within a file using less . We can also search within files without even opening them, using

grep . Simply put grep is a command-line utility for searching plain-text data sets for lines matching a pattern or

regular expression (regex).

Why the word "grep"? It is a shortened form of globally search for a regular expression and print matching lines

(g/re/p).

The syntax for grep is as follows: grep search_term filename . The pattern that we want to search is specified in

search_term slot, and the file we want to search within is specified in the filename slot. Let's give it a try by searching

the FASTQ files in the raw_fastq directory.

FASTQ files contain the sequencing reads (nucleotide sequences) output from a sequencing facility. Each sequencing

read in a FASTQ file is associated with four lines, with the first line (header line) always starting with an @ symbol. A

whole FASTQ record for a single read should appear similar to the following:

@HWI-ST330:304:H045HADXX:1:1101:1111:61397

CACTTGTAAGGGCAGGCCCCCTTCACCCTCCCGCTCCTGGGGGANNNNNNNNNNANNNCGAGGCCCTGGGGTAGAGGGNNNNNNNNNNNNNNGATCTTGG

+

B?@DDDDDDHHH?GH:?FCBGGB@C?DBEGIIIIAEF;FCGGI###

More information about the FASTQ file format

Line Description

1 Read name preceded by '@'

2 The actual DNA sequence

3 Read name (same as line 1) preceded by a '+' or just a '+' sign

4
String of characters which represent the quality score of each nucleotide in line 2; must have same

number of characters as line 2

You can find more information about FASTQ files in this lesson from our RNA-seq workshop.

Suppose we want to see how many reads in our file S1WTgex_S1_L001_R1_001.fastq contain the subsequence CAGAAT

$ cd ~/unix_lesson/raw_fastq

$ grep CAGAAT S1WTgex_S1_L001_R1_001.fastq

We get back a lot of reads or lines of text!

What if we wanted to see the whole FASTQ record for each of these reads? We would need to modify the default behavior

of grep and specify some argument/options. To look for all available options for the grep command, we can type grep

--help (or man grep).

Looks like the -B and -A arguments for grep will be useful to return the matched line plus one before (-B 1) and two

lines after (-A 2). Since each record is four lines, using these arguments will return the whole record. Within the whole

record, the second line will be the actual sequence that has the pattern we searched for.

$ grep -B 1 -A 2 CAGAAT S1WTgex_S1_L001_R1_001.fastq

https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon-flipped/lessons/05_qc_running_fastqc_interactively.html
https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon-flipped/lessons/05_qc_running_fastqc_interactively.html
https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon-flipped/
https://hbctraining.github.io/Intro-to-rnaseq-hpc-salmon-flipped/

@A01182:88:HCWMWDSX3:1:1101:9607:1000 1:N:0:ATGCGAATGG+NGACACTTGT

GNCTATGTCATAACCAAAGGCGGTCAAAAGGATAATCGGTATGCGTAGTTGGTTGTTCTTTTTATAATATATTTTTTAGAATTTTTAAGATACCTCAGAAT

+

F#FFFFFFFFFFFFFFFFFFFFFFFFFF:,,:,,::,,,,,,F,,,,,F:,,,F:F:FFFFFFF,F:FFF:,:::FFFF:F::F:::,F,F:FFF,,FFF:

--

@A01182:88:HCWMWDSX3:1:1101:30156:1016 1:N:0:ATGCGAATGG+NGACACTTGT

CNATCACTCTCACTATCAATTACGGCTGGGCGCCCCAAGCAGAATAATTGGGGGGTTTTTTTTTGCTTCCCTGACCATCTACAGAAAATATTCTAACAATC

+

F#:FFFFFFFFFFFFFFFFFFFFFFFFF,,:F,F,,,,,,,,::,,,,,::,FFF,,,F,F,F,:,:,,,,:F,:F,FF,,,,F:,,,FF,:,,F::F,FF

Exercises

1. Search for the sequence CTCAAT in S1WTgex_S1_L001_R1_001.fastq . How many sequences do you find?

2. In addition to finding the sequence, how can you modify the command so that your search also returns the name of

the sequence?

3. If you want to search for that sequence in all Mov10 replicate fastq files, what command would you use?

▸ Answers

More about searching text files with grep

Group separators (--), and how to remove them

You will notice that when we use the -B and/or -A arguments with the grep command, the output has some additional

lines with dashes (--), these dashes work to separate your returned "groups" of lines and are referred to as "group

separators". This might be problematic if you are trying to maintain the FASTQ file structure or if you simply do not want

them in your output. Using the argument --no-group-separator with grep will disable this behavior:

$ grep -B 1 -A 2 --no-group-separator CAGAAT S1WTgex_S1_L001_R1_001.fastq

Now your output should be returned as:

@A01182:88:HCWMWDSX3:1:1101:9607:1000 1:N:0:ATGCGAATGG+NGACACTTGT

GNCTATGTCATAACCAAAGGCGGTCAAAAGGATAATCGGTATGCGTAGTTGGTTGTTCTTTTTATAATATATTTTTTAGAATTTTTAAGATACCTCAGAAT

+

F#FFFFFFFFFFFFFFFFFFFFFFFFFF:,,:,,::,,,,,,F,,,,,F:,,,F:F:FFFFFFF,F:FFF:,:::FFFF:F::F:::,F,F:FFF,,FFF:

@A01182:88:HCWMWDSX3:1:1101:30156:1016 1:N:0:ATGCGAATGG+NGACACTTGT

CNATCACTCTCACTATCAATTACGGCTGGGCGCCCCAAGCAGAATAATTGGGGGGTTTTTTTTTGCTTCCCTGACCATCTACAGAAAATATTCTAACAATC

+

F#:FFFFFFFFFFFFFFFFFFFFFFFFF,,:F,F,,,,,,,,::,,,,,::,FFF,,,F,F,F,:,:,,,,:F,:F,FF,,,,F:,,,FF,:,,F::F,FF

Which line number has a match?

Another useful option when using grep is the -n option, which will print out the line number from the file for the match.

Adding this option to our previous command would work like this:

$ grep -B 1 -A 2 --no-group-separator -n CAGAAT S1WTgex_S1_L001_R1_001.fastq

This would return the output:

37-@A01182:88:HCWMWDSX3:1:1101:9607:1000 1:N:0:ATGCGAATGG+NGACACTTGT

38:GNCTATGTCATAACCAAAGGCGGTCAAAAGGATAATCGGTATGCGTAGTTGGTTGTTCTTTTTATAATATATTTTTTAGAATTTTTAAGATACCTCAGAAT

39-+

40-F#FFFFFFFFFFFFFFFFFFFFFFFFFF:,,:,,::,,,,,,F,,,,,F:,,,F:F:FFFFFFF,F:FFF:,:::FFFF:F::F:::,F,F:FFF,,FFF:

225-@A01182:88:HCWMWDSX3:1:1101:30156:1016 1:N:0:ATGCGAATGG+NGACACTTGT

226:CNATCACTCTCACTATCAATTACGGCTGGGCGCCCCAAGCAGAATAATTGGGGGGTTTTTTTTTGCTTCCCTGACCATCTACAGAAAATATTCTAACAATC

227-+

228-F#:FFFFFFFFFFFFFFFFFFFFFFFFF,,:F,F,,,,,,,,::,,,,,::,FFF,,,F,F,F,:,:,,,,:F,:F,FF,,,,F:,,,FF,:,,F::F,FF

A small thing you should note is that when using the -n option, lines that have a : after the line number correspond to

the lines with the match (e.g 38:GNCTATGTCATAACCAAAGGCGG...), while lines with a - after the line number are the

surrounding lines retrieved when using the -A and/or -B options (e.g. 37-@A01182:88:HCWMWDSX3:1:1101:9607:1000...).

Only returning lines that DO NOT match

One last grep option you might find quite useful is the -v option, which does an inverted match. This will return

everything that does not match the pattern. In order to demonstrate this let's first view a smaller file that you have.

$ cat ~/unix_lesson/other/experimental_design.tab

This is the metadata file for some FASTQ data. This should return:

condition replicate

g1 gfpn_g1_blue

g2m gfpn_g2m_blue

g2m gfpp_g2m_blue

g1 gfpp_g1_blue

g1 gfpn_g1_red

g2m gfpn_g2m_red

g2m gfpp_g2m_red

g1 gfpp_g1_red

g1 gfpn_g1_1

g2m gfpn_g2m_1

g2m gfpp_g2m_1

g1 gfpp_g1_1

g1 gfpn_g1_2

g2m gfpn_g2m_2

g2m gfpp_g2m_2

g1 gfpp_g1_2

Now, let's consider the case that we didn't want to output the "g1" cell type. We can use the -v option in grep like this:

$ grep -v g1 ~/unix_lesson/other/Mov10_rnaseq_metadata.txt

This will return all of lines that don't have "normal" in the line.

condition replicate

g2m gfpn_g2m_blue

g2m gfpp_g2m_blue

g2m gfpn_g2m_red

g2m gfpp_g2m_red

g2m gfpn_g2m_1

g2m gfpp_g2m_1

g2m gfpn_g2m_2

g2m gfpp_g2m_2

Redirection

When we use grep , the matching lines print to the Terminal (also called Standard Output or "stdout"). If the result of the

grep search is a few lines, we can view them easily, but if the output is very long, the lines will just keep printing and we

won't be able to see anything except the last few lines. You have experienced this when you searched for the pattern

CAGAAT . How can we capture them instead?

We can do that with something called "redirection". The idea is that we're redirecting the output from the Terminal (all

the stuff that went whizzing by) to something else. In this case, we want to save it to a file, so that we can look at it later.

Redirecting with ">"

The redirection command for writing something to file is > .

Let's try it out and put all the sequences that contain 'CAGAAT' from the S1WTgex_S1_L001_R1_001.fastq into another file

called S1WTgex_S1_L001_R1_001_selected.fastq .

$ cd ~/unix_lesson/raw_fastq

$ grep -B 1 -A 2 CAGAAT S1WTgex_S1_L001_R1_001.fastq > S1WTgex_S1_L001_R1_001_selected.fastq

The prompt will go away for a little bit and then you will get it back, but nothing will be printed on the Terminal. But, you

should have a new file called S1WTgex_S1_L001_R1_001_selected.fastq !

$ ls -l

Take a look at the file and see if it contains what you think it should.

NOTE: If we already had a file named S1WTgex_S1_L001_R1_001_selected.fastq in our directory, it would have

overwritten it without any warning!

Redirecting (and appending) with ">>"

The redirection command for appending something to an existing file is >> .

If we use >> , it will append to the existing content in a file, rather than overwrite it. This can be useful for saving more

than one search. For example, the following command will append the bad reads from Mov10_oe_2 to the bad_reads.txt

file that we just generated.

$ grep -B 1 -A 2 CTCAAT S1WTgex_S1_L001_R1_001.fastq >> S1WTgex_S1_L001_R1_001_selected.fastq

$ ls -l

Did the size of the bad_reads.txt file change?

Since our S1WTgex_S1_L001_R1_001_selected.fastq file isn't a raw_fastq file, we should move it to a different location

within our directory. Let's move it to the other folder using the command mv .

$ mv S1WTgex_S1_L001_R1_001_selected.fastq ../other/

Redirecting with pipes "|" (or piping)

The redirection command for using the output of a command as input for a different command is | .

The pipe key (|) is very likely not something you use very often (it is on the same key as the back slash (\), right

above the Enter/Return key).

What | does is take the output from one command, e.g. the output from grep that went whizzing by and runs it through

the command specified after it. When it was all whizzing by before, we wished we could just take a look at it! Maybe we

could use less instead of the rapid scroll. Well, it turns out that we can! We can pipe the output grep command to

less to slowly scroll through, or to head to just see the first few lines.

$ cd unix_lesson/raw_fastq

$ grep -B 1 -A 2 CAG S1WTgex_S1_L001_R1_001.fastq | less

Now we can use the arrows to scroll up and down and use q to get out.

Or we could just take a glance to see what the output looks like.

$ grep -B 1 -A 2 CAG S1WTgex_S1_L001_R1_001.fastq | head -n 5

Another thing we can also do is count the number of lines output by grep .

The wc command stands for word count. This command counts the number of lines, words and characters in the text

input given to it. The -l argument will only count the number of lines instead of counting everything.

$ grep CAG S1WTgex_S1_L001_R1_001.fastq | wc -l

Try it out without the -l to see the full output.

Tip - Similar to grep , you can type wc --help or man wc to see all options.

About Pipes:

• The pipe is a very important/powerful concept in Shell

• You can string along as many commands together as you like

The philosophy behind the three redirection operators (> , >> , |) you have learned so far is that none of them by

themselves do a lot. BUT when you start chaining them together, you can do some really powerful things really

efficiently.

To be able to use the shell effectively, becoming proficient in the use of the pipe and redirection operators

is essential.

Commands

cd # change directory

ls # list contents

man # manual for a command

pwd # check present working directory

tree # prints a tree of the file structure

cp # copy

mkdir # make new directory

mv # move or rename

rm # remove/delete

ctrl + c # cancel current command

ctrl + a # start of line

ctrl + e # end of line

history # list previously used commands

cat # print content of text file to screen

less # maneuver through content of text file on screen

head # see first lines of text file

tail # see last lines of text file

grep # search word in text files

> # redirect standard output of command

>> # redirect standard output of command

| # pipe: chain several commands together

Shortcuts

~ # home directory

. # current directory

.. # parent directory

* # wildcard of any length

? # wildcard of length 1

