### **Regularization for deep-learning models** Ways to adress overfitting

Sebastian Starke

26th September 2018



Member of the Helmholtz Association

Sebastian Starke | Department of Information Services and Computing | http://www.hzdr.de

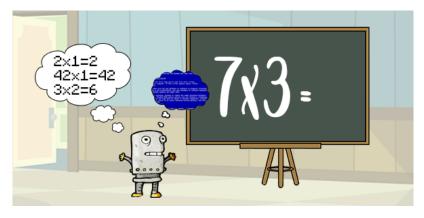


Figure: https://hackernoon.com/
memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-mach



### 1 Overfitting

- Why does it happen?
- When does it happen?

#### 2 Regularization methods

- Early stopping
- Penalties on the weights
- Dropout
- Data augmentation
- Batch normalization



# Overfitting

### 1 Overfitting

- Why does it happen?
- When does it happen?

### 2 Regularization methods

- Early stopping
- Penalties on the weights
- Dropout
- Data augmentation
- Batch normalization



# Overfitting

- the phenomenon of fitting training data too well (learning by heart)
- not capturing general structure but fitting of noise
- loss of ability to generalize to unseen samples
- ⇒ Tradeoff between capturing training information well enough but not exactly memorize it

Regularization methods aim to reduce overfitting and improve the models ability to generalize to unseen data.



### **Example of overfitting**

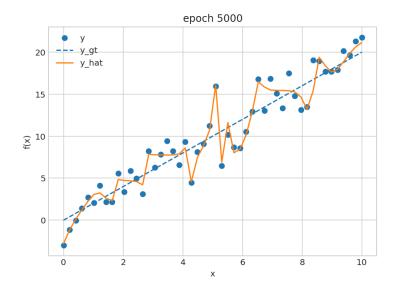


Figure: https://github.com/uschmidt83/keras-intro/blob/masterPr

Member of the Helmholtz Association

Sebastian Starke | Department of Information Services and Computing | http://www.hzdr.de

## Why?

- goal: from representative sample ⇒ learn about data-generation mechanism (unknown distribution P)
- model f should minimize the expected error over  $P \Rightarrow$  infeasible

$$E_{\boldsymbol{x}\sim P}L(f(\boldsymbol{x}), \boldsymbol{y})$$

instead have to minimize over training samples

$$\frac{1}{N} \sum_{i=1}^{N} L(f(\mathbf{x}_{i}), y_{i})$$
(1)

- possible over-adaptation to these N points (which is the mathematical goal, but not what we actually want)
- $\Rightarrow$  model might not learn the general concepts

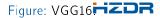
4 D b

### When?

- on small datasets
- powerful models ("high capacity model") with many parameters
- ⇒ Deep Learning models normally have very high capacity (especially if you stack many nonlinear layers)

|   | <pre>from keras.applications impo print(VGG16().summary())</pre> | rt VGG16              |          |
|---|------------------------------------------------------------------|-----------------------|----------|
| ī | ayer (type)                                                      | Output Shape          | Param #  |
| i | nput_2 (InputLayer)                                              | (None, 224, 224, 3)   | 0        |
| b | lock1_conv1 (Conv2D)                                             | (None, 224, 224, 64)  | 1792     |
| b | lock1_conv2 (Conv2D)                                             | (None, 224, 224, 64)  | 36928    |
| b | lock1_pool (MaxPooling2D)                                        | (None, 112, 112, 64)  | 0        |
| b | lock2_conv1 (Conv2D)                                             | (None, 112, 112, 128) | 73856    |
| b | lock2_conv2 (Conv2D)                                             | (None, 112, 112, 128) | 147584   |
| b | lock2_pool (MaxPooling2D)                                        | (None, 56, 56, 128)   | 0        |
| b | lock3_conv1 (Conv2D)                                             | (None, 56, 56, 256)   | 295168   |
| b | lock3_conv2 (Conv2D)                                             | (None, 56, 56, 256)   | 590080   |
| b | lock3_conv3 (Conv2D)                                             | (None, 56, 56, 256)   | 590880   |
| b | lock3_pool (MaxPooling2D)                                        | (None, 28, 28, 256)   | 0        |
| b | lock4_conv1 (Conv2D)                                             | (None, 28, 28, 512)   | 1180160  |
| b | lock4_conv2 (Conv2D)                                             | (None, 28, 28, 512)   | 2359808  |
| b | lock4_conv3 (Conv2D)                                             | (None, 28, 28, 512)   | 2359808  |
| b | lock4_pool (MaxPooling2D)                                        | (None, 14, 14, 512)   | 0        |
| b | lock5_conv1 (Conv2D)                                             | (None, 14, 14, 512)   | 2359808  |
| b | lock5_conv2 (Conv2D)                                             | (None, 14, 14, 512)   | 2359808  |
| b | lock5_conv3 (Conv2D)                                             | (None, 14, 14, 512)   | 2359808  |
| b | lock5_pool (MaxPooling2D)                                        | (None, 7, 7, 512)     | 0        |
| Ŧ | latten (Flatten)                                                 | (None, 25088)         | 0        |
| Ŧ | cl (Dense)                                                       | (None, 4096)          | 10276454 |
| Ŧ | c2 (Dense)                                                       | (None, 4896)          | 16781312 |
|   | redictions (Dense)                                               | (None, 1000)          | 4097000  |

In



# **Regularization methods**

1 Overfitting

- Why does it happen?
- When does it happen?

### 2 Regularization methods

- Early stopping
- Penalties on the weights
- Dropout
- Data augmentation
- Batch normalization



#### •••

### Early stopping

stop training procedure before model over-adapts

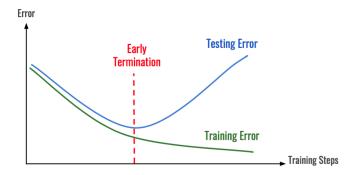


Figure: https://hackernoon.com/

memorizing-is-not-learning-6-tricks-to-prevent-overfitting-in-mach



### **Penalize weights**

- constraints on allowed parameters restrict model capacity
- modify the loss function by adding penalty term R (λ > 0 controls strictness of penalty)

$$\frac{1}{N}\sum_{i=1}^{N} L\left(f(\boldsymbol{x}_{i}), y_{i}\right) + \lambda \cdot R(f)$$
(2)

- tradeoff between fit and regularization needs to be found by optimizer
- L1 regularization ( $w_k$  are weights of the network function f):

$$R(f) = \sum_{k=1}^{M} |w_k| \tag{3}$$

L2 regularization

$$R(f) = \sum_{k=1}^{M} \|w_k\|^2$$

(4) JZDR

### Dropout

- randomly knock-out (ignore) neurons of a layer (only during training!)
- implicatly train many sub-networks
- forces the net to distribute its information (all neurons have to be able to do the job)
- might need longer training time

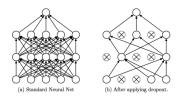


Figure: Subnetwork after randomly dropping some neurons.



### **Data augmentation**

- an easy way to get "more data"
- done by random transformations (rotate, flip, zoom, shift, ...) on training set
- increases variability of your data
- due to randomness, the net can't focus on a small subset ⇒ harder to overfit



Figure: Original data (top) and augmented data (bottom)

#### 

### **Batch normalization: Motivation**

- Motivation: during learning weights change
- ⇒ neuron outputs change ⇒ next layer has to adapt to that change of scale (covariate shift)
  - normalize each feature of training batch (zero mean, unit variance for each feature dimension)
- $\Rightarrow$  avoids layer inputs to change on orders of magnitude
  - inserted before nonlinear activations to avoid saturation (vanishing gradients)
  - $\blacksquare$  each input representation influenced by random batch  $\Rightarrow$  harder to 'memorize' fixed representation



**Algorithm 1:** Batch Normalizing Transform, applied to activation *x* over a mini-batch.

Figure: https://towardsdatascience.com/ batch-normalization-in-neural-networks-1ac91516821c

network can focus on learning, not rescaling

- allows higher learning rates
- at test time works differently:
  - can't use batch means and variances
  - use running averages obtained during training



### role of $\gamma$ and $\beta$

- last step of algorithm allows rescaling
- parameters are learned during training
- handle cases where normalized data might not be optimal ⇒ model learns that



#### day2/notebooks/regularization\_cat\_dog-mine



Member of the Helmholtz Association Sebastian Starke | Department of Information Services and Computing | http://www.kzdr.de