Convolutional Neural Networks

Jeffrey Kelling

23rd September 2018

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Member of the Helmholtz Association

Convolutional Neural Networks

overcome problems of MLPs:

- too many connections required for complex input data
- overfitting
- \Rightarrow very hard or impossible to train
- introduce specialized layers,

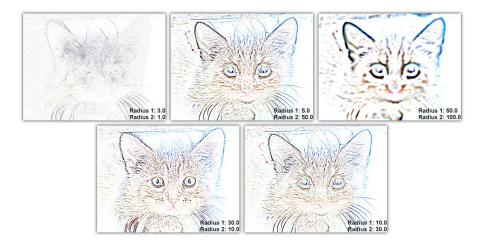
forcing the network to form a specific hierarchy

- in principle, MLPs could learn the same
- ... just narrowing the search space

Convolutional Neural Networks II

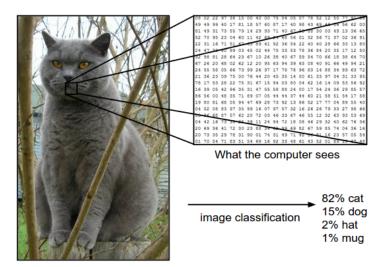
- layers inspired by steps classical approaches use, for images:
 - convolution
 - Keras Layers: Conv2D; Conv1D; Conv2DTranspose; ...
 - pooling (max, mean, ...)
 - Keras Layers: MaxPooling2D; AveragePooling2D; ...
- convolutions can also downample when strided

Convolution Filter



Member of the Helmholtz Association

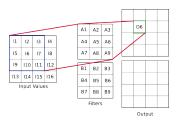
Cat vs Pixels



Member of the Helmholtz Association

Convolution I

 Multiply sliding window of input with small filter to produce output activations

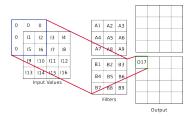


$$O_6 = A_1 I_1 + A_2 I_2 + A_3 I_3$$

+ $A_4 I_5 + A_5 I_6 + A_6 I_7$
+ $A_7 I_9 + A_8 I_{10} + A_9 I_{12}$

Convolution I

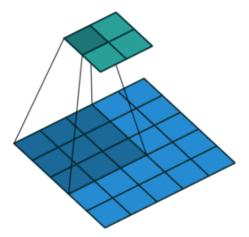
- Multiply sliding window of input with small filter to produce output activations
- Multiple convolution filters lead to multiple activation maps
- Borders may be padded or skipped



$$O_{17} = B_5 I_1 + B_6 I_2 + B_8 I_5 + B_9 I_6$$

Convolution II

- Filters are usually small: 3×3 or 5×5
- Stride > 1 leads to downsampling



< • •

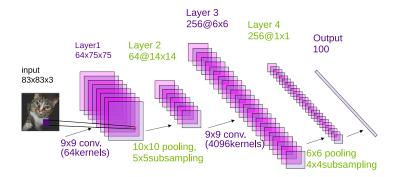
Tensor Representation of Layers



- convolution and pooling layers assign higher-dimensional topology to layers:
 - (x, y) image dimensions + color channels = 3 dimensions
- convolutions sum over all input channels (or excess dimensions)

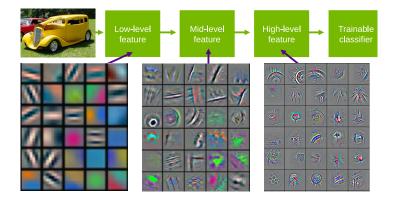
• • • •

Convolutional Neural Networks III



Member of the Helmholtz Association

Hierarchical Representations



Feature visualization of convolutional net trained on ImageNet¹

¹Zeiler & Fergus 2013

Member of the Helmholtz Association

Feature Hierarchies

- DNNs learn a hierarchy of representations
- stages of trainable feature transforms ...
- Image recognition: pixel → edge → texton → motif → part → object
- Text:

 $\mathsf{character} \to \mathsf{word} \to \mathsf{word} \ \mathsf{group} \to \mathsf{clause} \to \mathsf{sentence} \to \mathsf{story}$

Speech:

sample \rightarrow spectral band \rightarrow sound $\rightarrow \dots \rightarrow$ phoneme \rightarrow word

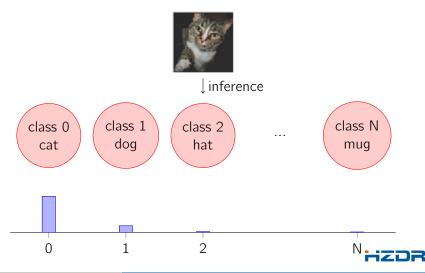
Exercise

day2/notebooks/convnets_cifar10

Member of the Helmholtz Association Jeffrey Kelling | Department of Information Services and Computing | http://www.hzdr.de

One-Hot Encoding

- Neural network classification results usually use one-hot encoding
- One output neuron per class



Member of the Helmholtz Association