Unsupervised Learning with Autoencoders and Generative Adversarial Networks

Jeffrey Kelling

27th September 2018

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Member of the Helmholtz Association

Jeffrey Kelling | Department of Information Services and Computing | http://www.hzdr.de

1 Autoencoders

2 Generative Models

- Variational Autoencoders
- Generative Adversarial Networks (GANs)

Autoencoders

2 Generative Models

- Variational Autoencoders
- Generative Adversarial Networks (GANs)

Unspervised Learning. Autoencoders

Training using unlabelled data

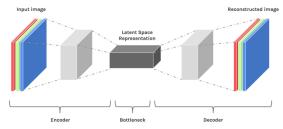
figure: Julien Despois @ medium.com

Page 3/13

Member of the Helmholtz Association Jeffrey Kelling | Department of Information Services and Computing | http://www.hzdr.de

Unspervised Learning. Autoencoders

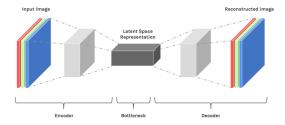
Training using unlabelled data



- Optimization goal is to reconstruct input image as output
- Bottleneck forces network to learn feature-based representation

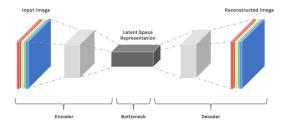
figure: Julien Despois @ medium.com

Why?



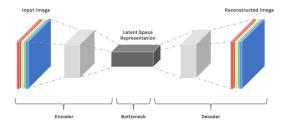
- **1** Latent space smaller tahn input \Rightarrow compression
 - errors hard to control

Why?



- **1** Latent space smaller tahn input \Rightarrow compression
 - errors hard to control
- 2 Discovery of frequent patterns in data
 - what gets a place in latent space is common
 - anomaly-detection: rare samples will have high reconstruction errors

Why?



- **1** Latent space smaller tahn input \Rightarrow compression
 - errors hard to control
- 2 Discovery of frequent patterns in data
 - what gets a place in latent space is common
 - anomaly-detection: rare samples will have high reconstruction errors
- 3 Discovery of features with convolutional autoencoders
 - Use encoder as pretrained part of classification of other network

Unspervised Learning—Google Brain I

Deep convolutional autoencoder trained using images from "the internet"¹

¹Le, Ranzato et al. 2011

Page 5/13

Jeffrey Kelling | Department of Information Services and Computing | http://www.hzdr.de

•••

Unspervised Learning—Google Brain I

- Deep convolutional autoencoder trained using images from "the internet"¹
- One neuron in the bottleneck reacts strongly to faces ...

. . . .

Unspervised Learning—Google Brain I

- Deep convolutional autoencoder trained using images from "the internet"¹
- One neuron in the bottleneck reacts strongly to faces ...

... it is most strongly excited by this face:

¹Le, Ranzato et al. 2011

Member of the Helmholtz Association

Jeffrey Kelling | Department of Information Services and Computing | http://www.hzdr.de

•••

Unspervised Learning—Google Brain II

Concepts common in the training data automatically learned cat face human body

Member of the Helmholtz Association Jeffrey Kelling | Department of Information Services and Computing | http://www.bzdr.de

Exercise 1: Autoencoder

day4/notebooks/MNISTAutoencoder

Member of the Helmholtz Association Jeffrey Kelling | Department of Information Services and Computing | http://www.hzdr.de

Specialized embedding algorithms

- GloVe https://nlp.stanford.edu/projects/glove/
- word2vec https://arxiv.org/abs/1301.3781

https://www.aclweb.org/anthology/N13-1090

< 🗆 🕨

Specialized embedding algorithms

- GloVe https://nlp.stanford.edu/projects/glove/
- word2vec https://arxiv.org/abs/1301.3781

https://www.aclweb.org/anthology/N13-1090

Uniform Manifold Approximation and Projection (umap) https://github.com/lmcinnes/umap

4 🗆 🕨

Generative Models

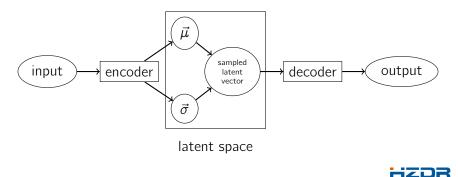
1 Autoencoders

2 Generative Models

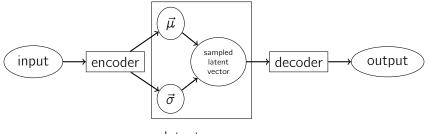
- Variational Autoencoders
- Generative Adversarial Networks (GANs)

Variational Autoencoders I

- autoencoder which learns the distribution of (input) latent space samples
 - assuming multi-dimensional gaussian
 - \blacksquare learning vectors mean $\vec{\mu}$ and standard deviation $\vec{\sigma}$
- learned distribution is sampled to generate output
 - \Rightarrow generative model



Variational Autoencoders I



latent space

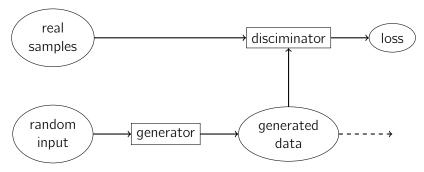
 loss needs to maximize reconstruction and gaussianity of input latent space vectors

$$loss = reconLoss + \sum KLDivergence(\mu_i, \sigma_i)$$

•••

Generative Adversarial Networks (GANs)

- two networks competing in a zero-sum game during training
 - D Discriminator: distingiush between real and generated input
 - G Generator: generate samples, which the discriminator labels as real



also as modified loss function, e.g. when training auto-encoders

Exercise 2: Variational Autoencoder

day4/notebooks/MNISTVAE

Member of the Helmholtz Association Jeffrey Kelling | Department of Information Services and Computing | http://www.hzdr.de