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Abstract

Modern microscopy modalities create a data deluge with gigabytes of data generated each second, or terabytes
per day. Storing and processing these data is a severe bottleneck, not fully alleviated by data compression. We
argue that this is because images are processed as regular grids of pixels. To address the root of the problem, we
here propose a content-adaptive representation of fluorescence microscopy images called the Adaptive Particle
Representation (APR). The APR replaces the regular grid of pixels with particles positioned according to image
content. This overcomes storage bottlenecks, as data compression does, but additionally overcomes memory and
processing bottlenecks, since the APR can directly be used in processing without going back to pixels. We present
the ideas, concepts, and algorithms of the APR and validate them using noisy 3D image data. We show that the
APR represents the content of an image while maintaining image quality. We then show that the adaptivity of the
APR provides orders of magnitude benefits across a range of image processing tasks. Therefore, the APR provides
a simple, extendable, and efficient content-aware representation of images that relaxes current data and processing
bottlenecks.

New developments in fluorescence microscopy (1–3),
labeling chemistry (4), and genetics (5) provide the po-
tential to capture and track biological structures at high
resolution in both space and time. Such data is vital
for understanding many spatiotemporal processes in bi-
ology (6). Unfortunately, fluorescence microscopes do
not directly output the shapes and locations of objects
through time. Instead, they produce raw data, poten-
tially terabytes of 3D images (7), from which the de-
sired spatiotemporal information must be extracted by
image processing. Handling the large image data and
extracting information from the raw microscopy images
presents the main bottleneck (7–9). We propose that at
the core of the problem is not the amount of information
contained in the images, but how the data encodes this
information – usually as a uniform grid of pixels. While
data compression can alleviate storage issues, it does not

reduce memory usage nor computational cost as all pro-
cessing must still be done on the original, uncompressed
data.

Processing bottlenecks are effectively avoided by the
human visual system, which solves a similar problem
of inferring object shapes and locations from photon ac-
counts. In part, the human visual system achieves this
by adaptively sampling the scene depending on its con-
tent (10), while adjusting to the dynamic range of in-
tensity variations (11). This adaptive sampling works
by selectively focusing the attention of the eyes on ar-
eas with potentially high information content (10). This
selective focus then enables the efficient inference of in-
formation about the scene at a high effective resolution
by directing the processing capacity of the retina and
visual cortex. As in fluorescence microscopy, the infor-
mation in different areas of a scene is not encoded in
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absolute intensity differences, but in relative differences
compared to the local brightness. The human visual sys-
tem maintains effective adaptive sampling across up to
nine orders of magnitude of brightness levels (11) by
using local gain control mechanisms that adjust to, and
account for, changes in the dynamic range of intensity
variations. Together, adaptation and local gain control
enable the visual system to provide a high rate of infor-
mation content using as little as 1 MB/s of data from the
retina (12). In contrast, the rate of information in pixel
representations of fluorescence microscopy images is
much lower and is defined by the spatial and temporal
resolution of the images rather than by their contents.

Inspired by the adaptive sampling and local gain con-
trol of the human visual system, we propose a novel
representation of fluorescence microscopy images –
the Adaptive Particle Representation (APR). The APR
adaptively resamples an image, guided by local infor-
mation content, while taking into account an effective
local gain control. Figure 1A illustrates the basic idea of
adaptive sampling. The top panel shows a pixel repre-
sentation of a fluorescence image acquired from a spec-
imen of Danio rerio, with labeled cell nuclei. The pixel
representation places the same computational and stor-
age costs in areas containing labeled cell nuclei and in
areas with only background signal. This uniform sam-
pling results in processing costs that are proportional to
the spatial and temporal resolution of the acquisition,
rather than the actual information content of the image.
The main difficulty in adaptation, however, is to give
equal importance to imaged structures across a wide
range of intensity scales. This is achieved by local gain
control as illustrated in Figure 1B. Without local gain
control, adapting effectively to both bright and dim re-
gions in the same image is not possible (centre left). The
APR provides local gain control by guiding the adapta-
tion by a Local Intensity Scale (center right). As seen
in Figure 1B (right), this samples dim and bright ob-
jects at comparable resolution, giving them equal im-
portance. Combining adaptive sampling and local gain
control, the APR shares two key features of the human
visual system to alleviate processing and storage bottle-
necks in current fluorescence microscopy.

While the APR reduces storage costs, as data com-
pression also does, it additionally overcomes memory
and processing bottlenecks, since the APR can directly
be used in processing without going back to pixels.
Compression only alleviates storage costs, as the data
need to be decompressed again for processing or vi-

sualization. The APR is therefore not a compression
scheme, but an efficient image representation that can
additionally then also be compressed. We posit that any
image representation aiming to achieve this should ful-
fill the following representation criteria (RC):

RC1: It must guarantee a user-controllable representation
accuracy for noise-free images and must not reduce
the signal-to-noise ratio of noisy images.

RC2: Memory and computational cost of the representa-
tion must be proportional to the information con-
tent of an image, and independent of the number of
pixels.

RC3: It must be possible to rapidly convert a given pixel
image into that representation with a computational
cost at most proportional to the number of input
pixels.

RC4: The representation must reduce both computa-
tional cost and memory cost of image-processing
tasks with a minimum of algorithmic changes and
without resorting to the original pixel representa-
tion.

There is a rich history in multi-resolution and adap-
tive sampling approaches to image processing, in-
cluding super-pixels (13, 14), wavelet decompositions
(15–17), scale-space and pyramid representations (18,
19), contrast-invariant level-set representations (20),
dictionary-based sparse representations (21), adaptive
mesh representations (22–24), and dimensionality re-
duction (25, 26). However, none of the existing ap-
proaches meets all of the above representation criteria,
mainly because they were developed for different appli-
cations.

Many previous methods, such as super pixels and
contrast-invariant level-set representations, provide ef-
fective solutions accounting for changes in spatial scales
and contrast. They can efficiently be used for spe-
cific tasks, such as image segmentation, providing high-
quality solutions at reduced memory and computational
costs. However, it is unclear how these methods can be
used across a wider range of processing tasks, such as
image visualization, without still requiring the original
pixel image. Alternatively, adaptive sampling methods,
such as thresholded wavelets and adaptive mesh meth-
ods, provide more general representations that could re-
place pixel images while reducing both computational
cost and memory cost. However, both approaches have
not been adapted to account for local contrast variations
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Figure 1: Spatially adaptive representation of fluorescence microscopy images. A. Example image of fluorescently labeled zebrafish cell
nuclei (Dataset 7 from STable 3, courtesy of Huisken Lab, MPI-CBG & Morgridge Institute for Research), represented on a regular grid
of pixels (top, right half ). The top left half shows the pixel image, and the bottom panel the APR. Particles are shown as dots with their
color indicating fluorescence intensity and their size reflecting the local resolution of the representation. B. Adaptively representing objects of
different intensity requires accounting for the local brightness levels. The left panel compares two regions of labeled cell nuclei (Dataset 6 from
STable 3, courtesy of Tomancak Lab, MPI-CBG) with different brightnesses. The center left panel shows adaptive representations based on
the absolute intensity. The right panel shows the APR accounting for the Local Intensity Scale of the image as shown in the center right panel.
Using the Local Intensity Scale, objects are correctly resolved across all brightness levels, without over-resolving the background.

are are unlikely to be formed rapidly for large 3D im-
ages without further improvements. Additionally, tech-
niques that require a change of basis, such as dictionary
techniques and wavelets, require the reformulation of
image-processing tasks in the transformed domain.

Here, we propose the APR, which meets all of the
above representation criteria, and provides a general
framework combining concepts from the range of exist-
ing methods, resulting in an ideal candidate to replace
pixel images in fluorescence microscopy.

The Adaptive Particle Representa-
tion

We first describe the basic concepts of the APR and its
components. In the subsequent subsection, we provide
all technical details needed to reproduce or reimplement
the APR. For simplicity, we do so using a 1D image as a
didactic example (see also SuppMat 11; code available
from github.com/cheesema/APR 1D demo). All of the
concepts introduced extend to higher dimensions and
general continuous functions, as shown in the Supple-
ment. Readers not interested in the technical details can

skip that subsection and continue to the results and eval-
uations without compromising understanding the basic
concepts behind the APR.

The APR takes an input pixel image and resamples
it in a spatially adaptive way that depends on image
content, representing it as a set of particles with asso-
ciated intensity values. Particles are a generalization
of pixels, i.e., points in space that carry intensity, but
they are not restricted to sit on a regular lattice. In-
stead, particles can be placed wherever image contents
requires, and they may additionally have different sizes
in different parts of the image. These sizes define the
resolution with which the image is locally represented.
The required/desired resolution is given everywhere by
an “Implied Resolution Function” which is computed
from the intensity gradient of the image. It therefore
attributes high resolution to image areas where the in-
tensity rapidly changes in space (e.g., edges), and low
resolution to areas of (almost) constant intensity (e.g.,
background or uniform foreground). The APR algo-
rithm then finds a set of particles, that is their locations,
sizes, and intensities, such that the required resolution
is guaranteed everywhere and the image intensity can
be reconstructed at each pixel from the intensities of the
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nearby particles with an accuracy that is guaranteed to
be better than a user-defined threshold. Therefore, the
APR efficiently finds a contents-adaptive representation
of the image with full user control over the representa-
tion quality.

If perfect accuracy is required, the APR places one
particle at each pixel, in which case it becomes equiva-
lent to the original pixel representation. However, fluo-
rescence microscopy images are typically rather sparse,
such that the number of particles can be orders of magni-
tude smaller than the number of pixels if small intensity
deviations (e.g., within the imaging noise) are allowed.
The computational and storage costs of the APR are pro-
portional to the number of particles, and no longer to the
number of pixels. Therefore, by focusing on informa-
tive image areas, the APR reduces storage and computa-
tional costs and increases the information-per-data ratio.
While it is intuitive that such a representation is desir-
able, finding the minimum number of particles that best
represent a given image is a hard problem to solve. The
APR algorithms presented next approximately solve this
problem in a computationally efficient way, such that
images can be converted to APR at acquisition speed.

Reconstruction Condition
For the APR to optimally represent a given image with
intensities I(y) at pixels y, the Implied Resolution
Function should be as large as possible at every loca-
tion, while still guaranteeing that the image can be re-
constructed within the user-specified relative error E
scaled by the Local Intensity Scale σ(y). The Local
Intensity Scale σ(y) is an estimate of the range of in-
tensities present locally in the image. Considering an
arbitrary Resolution Function R(y), we can formulate
the problem as finding the largest R(y) everywhere that
satisfies

|I(y)− Î(y)| ≤ Eσ(y), (1)

where Î(y) is the reconstructed intensity calculated by
any non-negative weighted average over particles within
R(y) distance of y. We call this the Reconstruction Con-
dition and illustrate it in Figure 2B. For the 1D exam-
ple shown in Figure 2, a constant local intensity scale
σ(y) = 1 is used. Maximizing R(y) minimizes 1

R(y) ,
which is proportional to the locally required sampling
density. Therefore, maximizingR(y) results in the min-
imum number of particles used. Unfortunately, finding
the optimal R(y) that satisfies the Reconstruction Con-
dition for arbitrary images requires a number of com-

pute operations that proportional to the square of the
number of pixels N . This computational cost is pro-
hibitive even for modestly sized images. We propose
two conservative restrictions on the problem and show
that the optimal solution to the restricted problem can
be computed with a total number of operations that is
proportional to N .

APR Solution
We outline the two problem restrictions, and how they
are used to formulate an efficient linear-time algorithm
for creating the APR.

Resolution Bound The first restriction on the Reso-
lution Function R(y) requires that for all original pixel
locations y it satisfies the inequality

R(y) ≤ L(y∗) (2)

for all y∗ with |y − y∗| ≤ R(y), and L(y) = Eσ(y)
|∇I| .

Here |∇I| is the magnitude of the image intensity gra-
dient, which in 1D is |dIdy | and can be computed directly
from the image. We call this inequality the Resolution
Bound, and L(y) the Local Resolution Estimate. If we
assume the continuous intensity distribution underlying
the image to be differentiable everywhere and the Lo-
cal Intensity Scale σ(y) to be sufficiently smooth (See
SuppMat 2.3), satisfying the Resolution Bound guaran-
tees satisfying the Reconstruction Condition (See Supp-
Mat 2.2). In Figure 2C, we illustrate that the Resolu-
tion Bound in 1D requires that a box centered at y of
height R(y) and width 2R(y) does not intersect any-
where with the graph of L(y). Since the Resolution
Bound represents a tighter bound than the Reconstruc-
tion Condition, the optimal solution to the Resolution
Bound Rb(y) is always less than or equal to the optimal
solution to the Reconstruction Condition Rc(y), there-
fore providing the same or a higher image representa-
tion accuracy. The dashed lines in Figure 2D illustrate
this for the 1D example. As mentioned above, solving
for the optimal Resolution Function requires computer
time ∝ N2. However, we show next that the Resolution
Bound can be found optimally with linear time in N if
we restrict the Resolution Function to be composed of
square blocks.

Finding the Resolution Function with Particle cells
The second restriction is that the blocks constituting the
Resolution Function must have edge lengths that are
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Figure 2: Concepts and definitions of the Adaptive Particle Representation (APR) illustrated in 1D. See main text for explanations. A.
APR (left,E = 0.1, σ(y) = 1) and uniform pixel (right, h = 0.0078) representation of the shifted 1D Gaussian I(y) = exp

[
−(y−0.01)2

0.009

]
+

0.1. The bottom plots show the corresponding Resolution FunctionsR(y) with the set of particles P shown as dots above. B. Illustration of the
Reconstruction Condition, requiring that for all original pixel locations y, any non-negative weighted average of the particles (green dots) within
R(y) distance of y reconstructs an intensity value with a deviation less than Eσ(y) (red dashed interval). C. Illustration of the Resolution
Bound, requiring for all locations y that a rectangle centered at y with width 2R(y) and height R(y) does not intersect the curve of the
Local Resolution Estimate L(y). For the choices shown in the figure, fulfilling the Resolution Bound guarantees fulfilling the Reconstruction
Condition, given assumptions on σ. D. Comparison of the optimal (largest everywhere) Resolution Function satisfying the Reconstruction
Condition Rc(y) (blue dashed) with the optimal Rb(y) satisfying additionally also the Resolution Bound (green dashed) and with the optimal
Implied Resolution Function R∗(y) (bold black) for the 1D Gaussian example from A. The Implied Resolution Function is composed of the
upper edge of blocks called Particle Cells (gray). They never intersect the optimal Resolution Function (Rb), therefore providing a conservative
approximation. E. Definition of a 1D Particle Cell as described by its level l and location i. F. The set of all possible Particle Cells can be
represented as a binary tree reaching down to single-pixel resolution. G. The Local Particle Cell set L is constructed from L(y). The link
between sections of L(y) and a Particle Cells in L are shown in with braces and dotted lines. All possible Particle Cells are shown as blocks
and those belonging to L are shaded blue (Ω = |Ω| in labeled axis for brevity).
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powers of 1/2 of the image edge length. The piecewise
constant Resolution Function defined by the uppermost
edges of these blocks is called the Implied Resolution
FunctionR∗(y) and is shown in black in Figure 2D. The
blocks we call Particle Cells. They have sides of length
|Ω|
2l , where |Ω| is the edge length of the image, measured

in pixels. The number l is a positive integer we call the
Particle Cell Level. Each Particle Cell ci,l, is therefore
uniquely determined by its level l and location i. Fig-
ure 2E illustrates these definitions for a single Particle
Cell (See SuppMat 4 for the nD formal definition). The
size of the blocks on the lowest resolution level is half
the size of the image (lmin = 1), and the highest level
of resolution lmax contains boxes the size of the original
pixels. For image edge lengths that are not powers of 2,
|Ω| is rounded upwards to the nearest power of two.

Using these two restrictions, the problem of finding
the optimal Resolution Function can be reduced to find-
ing the smallest set V of particle cells that defines an Im-
plied Resolution Function R∗(y) that satisfies the Reso-
lution Bound (SuppMat 4.1). We call this minimal set V
of Particle Cells the Optimal Valid Particle Cell (OVPC)
set.

To construct an algorithm that efficiently finds the
OVPC set for a given Local Resolution Estimate L(y),
we first formulate the Resolution Bound in terms of Par-
ticle Cells. This formulation requires arranging the Par-
ticle Cells ci,l by level l and location i in a tree struc-
ture, as shown in Figure 2F. In 1D this is a binary tree,
in 2D a quad-tree, and in 3D an oct-tree. When arranged
as a tree structure, we can naturally define children and
neighbor relationships between Particle Cells, as shown
in green and blue in the example. We also define the de-
scendants of a Particle Cell as the set of all children and
children’s children up to the maximum resolution level
lmax. Given these definitions, the Local Resolution Esti-
mate L(y) can be represented as a set of Particle Cells L
by iterating over each pixel y∗, and adding the Particle
Cell with level l = dlog2

|Ω|
L(y)e and location i = b 2ly∗

|Ω| c
to L if it is not already in L (assuming the lower-left
boundary of the image is at zero). Figure 2G illustrates
how L relates to L(y), with L also represented in Fig-
ure 2F in the tree structure. We call this set of Particle
Cells the Local Particle Cell (LPC) set L (See Supp-
Mat 4.2).

We can then represent the Resolution Bound in terms
of L. A set of Particle Cells V will define an Implied
Resolution Function that satisfies the Resolution Bound
for L(y), if and only if the following statement is true:

for every Particle Cell in V , none of its descendants,
or neighbors’ descendants, are in the LPC set L (Sup-
pTheorem 1). We call any set of Particle Cells satisfying
this statement valid. The OVPC set V is then uniquely
defined as the valid set for which replacing any combi-
nation of Particle Cells with larger Particle Cells would
result in V no longer being valid (SuppTheorem 2).

Pulling Scheme We present an efficient algorithm for
finding the OVPC set V called the Pulling Scheme. The
name is motivated by how a single Particle Cell in L
pulls the resolution function down to enforce smaller
Particle Cells across the image. The Pulling Scheme
finds the OVPC set V directly, without explicitly check-
ing for validity or optimality. The result is by con-
struction guaranteed to be valid and optimal. In order
to derive the algorithm, we leverage three properties of
OVPC sets:

1. Predictable and self-similar structure: Neighbor-
ing Particle Cells never differ by more than by one
level and are arranged in a fixed pattern around the
smallest Particle Cells in the set. This local struc-
ture is independent of absolute level l and endows
the set with a self-similar structure. Using this
structural feature, the OVPC set V for a LPC set
L with only one Particle Cell ci,l can be generated
directly for any i and l.

2. Separability: We can find the OVPC set given
a LPC set L by considering each cell in L sep-
arately and then combining the smallest Particle
Cells from all sets that cover the image (see Sup-
pLemma 1). SFigure 4 illustrates this separability
property.

3. Redundancy: The redundancy property tells us that
when constructing V , we can ignore all Particle
Cells in L that have descendants in L. This is
because descendants provide equal or tighter con-
straints on the resolution function than their parent
Particle Cells (see SuppLemma 2 for the proof).

These properties enable us to efficiently construct V by
propagating solutions from individual Particle Cells in
L, one level at a time, starting from the highest level
(lmax) of the smallest Particle Cells in L. Here we use a
simple implementation that explicitly represents all pos-
sible Particle Cells in an image pyramid structure1. The

1Alternative implementations are possible that do not require the
explicit storage of the full tree structure, but are not discussed here.

6



Local Intensity Scale

Reconstructed ImageAPRLocal Resolution EstimateInput Image Gradient Magnitude

Resolution Function

Figure 3: Pipeline for forming the APR in 3D. Illustration of the steps for creating the APR of an example using a 2D slice of a fluorescence
image (Dataset 10 in STable 3, courtesy of Lemaire lab, CRBM (CNRS) and Hufnagel lab, EMBL). First the Local Intensity Scale σ(y) and
the gradient magnitude |∇I(y)| are calculated. These two are then combined to compute the Local Resolution Estimate L(y). The Pulling
Scheme (red arrow) then uses L(y) to compute the optimal Implied Resolution Function R∗(y). This is then used to define the OVPC set V
and the particle locations P , which generate the APR (bottom panel). The top half of the bottom panel shows the particles of the APR with
color encoding intensity. The bottom half shows a piecewise constant reconstruction Î(y) of the image for visualization.

Pulling Scheme is summarized in Supplementary Algo-
rithm 1, and SFigure 7 illustrates the steps for each level.
SuppMat 5.5 and SuppMat 13.5 provide additional de-
tails. The computational cost of the algorithm scales
with the number of Particle Cells in V . Computing the
OVPC set V using the Pulling Scheme incurs a compu-
tational cost that is at most proportional to the number
of pixels N .

Using Equivalence Optimization (See SuppMat 5.4
and SuppMat 5.7), the computational and memory costs
of the Pulling Scheme can be further reduced by a fac-
tor of 2d, where d is the image dimensionality, while
obtaining the same solution. A second optimization re-
stricts the neighborhood of particle cells to further re-
duce the total number of particles used, as described in
SuppMat 5.6. We use both optimizations for results pre-
sented in this paper. Ultimately, the only operation that
needs to be computed on the full pixel image is a simple
filtering operations for the gradient magnitude.

Placing the ParticlesP Given the Implied Resolution
Function computed by the Pulling Scheme, the last step
of forming the APR is to determine the locations of the
particles P . Locations must be chosen so that around
each pixel y there is at least one particle within a dis-
tance of R∗(y). This requirement is easily satisfied by
placing one particle at the center of each Particle Cell in
V . Specifically, for each Particle Cell ci,l in V , we add

a particle p to P with location yp = |Ω|
2l (i + 0.5). For

each particle p we store the image intensity at that lo-
cation Ip = I(yp), interpolated from the original pixels
as described in SuppMat 6. This way of arranging the
particles has the advantage that the particle positions do
not need to be explicitly stored, as they are determined
by V .

Forming the APR={V,P} In Figure 3 we outline the
steps required to form the APR from an input image.
The APR can be stored as the combination of {V,P}.
We represent the OVPC set V by storing the integer level
l and the integer location i for each Particle Cell. V
then defines the Implied Resolution Function R∗(y) for
all y in the image. The second component, the particle
set P , stores the properties of each particle p, i.e., its
intensity and level. Since the particle positions do not
need to be stored, the APR can be efficiently represented
in memory.

Imaging noise and accuracy Determining L(y) re-
quires computing the intensity gradient ∇I over the in-
put image. In practice, the pixel intensities are noisy,
which leads to uncertainty in the computed L(y). In
SuppMat 7, we provide theoretical results how this un-
certainty imposes a lower bound on the achievable rep-
resentation accuracy E.
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Data structures Appropriate data structures must be
used to store and process on the APR efficiently. Ideally,
these structures allow direct memory access at low over-
head. Here, we propose a multi-level data structure for
the APR, as described in SuppMat 18. Each APR level
is encoded similar to sparse matrix schemes. This data
structure efficiently stores V and P by explicitly encod-
ing only one spatial coordinate per Particle Cell, while
allowing random access. We call this data structure the
Sparse APR (SA) data structure. It relies on storing one
red-black tree per x, z, and level, caching access infor-
mation for contiguous blocks of Particle Cells. When
storing image intensity using 16 bits, the SA data struc-
ture requires approximately 50% more memory than the
intensities alone. Simpler data structures, without the
red-black tree, can be used to reduce this overhead if
random access is not required. In all results presented
here, we use the SA data structure.

APR image file format We store the APR using the
HDF5 file format (27) and the BLOSC HDF5 plugin
(28) for lossless Zstd compression of the Particle Cell
and intensity data in the file.

3D Fluorescence APR Implementa-
tion
We assess the properties of the APR for noisy 3D flu-
orescence microscopy images. Figure 3 illustrates the
main steps of the implementation using a 2D image slice
of a 3D image.

When implementing the APR, three design choices
have to be made: First, one has to decide how to calcu-
late the gradient magnitude |∇I(y)|. Second, one has to
decide how to compute the Local Intensity Scale σ(y).
Third, one has to decide how to interpolate the image
intensity at particle locations Ip = I(yp). Full details
are given in SuppMat 13.

To calculate the gradient magnitude over the input im-
age we use smoothing cubic B-Splines (29), which pro-
vide robust gradient estimation in the presence of noise.
They require the setting a smoothing parameter λ de-
pending on the noise level, as described in SuppMat 13.

For the Local Intensity Scale σ(y), we use a smooth
estimate of the local dynamic range of the image, as de-
scribed in SuppMat 13.3. This form of the local inten-
sity scale accounts for variations in the intensities of la-
beled objects, similar to gain control in the human visual

systems. We ensure that σ is sufficiently smooth (see
SuppMat 4.4) by computing it over the image down-
sampled by a factor of two. Examples are shown in
Figures 1B and 3. The size of the smoothing window
is given by a rough estimate of the standard deviation
of the point-spread function (PSF) of the microscope.
Further, a minimum threshold is introduced to prevent
resolving background noise (see SuppMat 13).

Two methods are combined to interpolate pixel inten-
sities to particle locations: for particles in Particle Cells
at pixel resolution, the intensities are directly copied
from the respective pixels, while for particles in larger
particle cells, we assign the average intensity of all pix-
els in that Particle Cell (19).

We also provide a method for reconstructing a pixel
image Î(y) from the APR. A pixel image satisfying the
Reconstruction Condition in Eq. 1 can be reconstructed
from the APR using any non-negative weighted average
of particles within R∗(y) of pixel y. In SuppMat 10 we
discuss possible weight choices, providing examples of
smooth, piecewise constant, and worst-case reconstruc-
tions. For displaying figures and benchmarking, unless
otherwise stated, we use the piecewise constant recon-
struction in this paper. This reconstruction sets all pixels
inside a Particle Cell equal to the intensity of the parti-
cle in that cell and thus has the best computational effi-
ciency.

All design decisions have been made to optimize ro-
bustness against imaging noise and computational effi-
ciency. We find that the method is stable with respect
to the choice of parameters. A discussion of parameter
selection for real datasets is given in SuppMat 14, and
the parameter values used for our test datasets are given
in STable 3.

Validation
All benchmarks use the open-source C++ APR software
library LibAPR (github.com/cheesema/LibAPR) com-
piled with with gcc 5.4.0 and OpenMP shared-memory
parallelism on a 10-core Intel Xeon E5-2660 v3 (25 MB
cache, 2.60 GHz, 64 GB RAM) running Ubuntu Linux
16.04. SuppMat 16 provides a detailed description of
each benchmark and the parameters used.

Benchmarks on synthetic data
We first assess the performance of the APR using syn-
thetic benchmark data. SuppMat 15 and SFigure 26 out-
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Figure 4: Benchmarking the APR on synthetic data. All results are shown as mean (lines) and standard deviation (bands). A. Observed
reconstruction error E∗ (solid lines, left axis) between the ground truth and the piecewise constant APR reconstruction (SuppMat 16.2) for
noise-free images. Number of particles used by the APR (dashed lines, right axis) for different user-defined error thresholds E. Results are
shown for images of different sharpness (blur) (inset legend). The APR reconstruction error is below the specified threshold in all cases. More
accurate APRs require more particles. B. Peak signal-to-noise ratio (PSNR) of the APR relative to the PSNR of the original pixel image for
different error thresholds E and image noise levels (inset legend) (SuppMat 16.3). For low E and noisy images, the APR has a better PSNR
than the input images. C. Examples of test images of spherical objects with different noise level and E used in the benchmarks. The top row
shows the APR reconstruction of the medium-blur noise-free test image at differentE compared to the ground truth. The bottom rows compare
the original image with the APR reconstructions of noisy images for E = 0.1 and illustrate the inherent denoising property of the APR. D.
PSNR ratio (solid lines, left axis and number of particles used (dashed lines, right axis) for images containing different numbers of objects, i.e.,
different information content, for E = 0.1. (SuppMat 16.4). In all cases, the PSNR of the APR is better than that of the input image, and the
number of particles scales at most linearly with image information content. E. Number of APR particles (solid line, left axis and input image
pixel (dashed line, right axis) for images of different width W containing a fixed number of objects (SuppMat 16.5). The number of particles
of the APR plateaus once the objects in the image are well resolved. F. Visual comparison of a medium-blur, medium-noise image I containing
six objects (left) with its APR reconstruction Î (right) for E = 0.1.
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line the synthetic data generation pipeline. The key ad-
vantage of synthetic data is that all relevant image pa-
rameters can be varied and the ground-truth image is
known. Synthetic images are generated by placing a
number of blurred objects into the image domain and
corrupting with modulatory Poisson noise. We study
the influence of image size, content, and noise level on
the performance of the APR. Spherical objects are used
for simplicity unless otherwise indicated.

Reconstruction Condition We experimentally con-
firm that the APR satisfies the Reconstruction Condi-
tion in Eq. 1 in the absence of noise. Figure 4A shows
the empirical relative error E∗ = |I(y) − Î(y)|∞
for increasing imposed error bounds E. In all cases,
E∗ < E, as required by the Reconstruction Condi-
tion. As expected, the number of particles used by the
APR to represent the image decreases with increasing
E (right axis). The results are unchanged when using
more complex objects than spheres or different recon-
struction methods (SFigure 29). Figure 4C provides ex-
amples of the quality of APR reconstruction at different
E, compared to ground truth. In the absence of noise,
the APR satisfies the Reconstruction Condition every-
where, guaranteeing a reconstruction error below the
user-specified threshold, fulfilling the first part of RC1.

Robustness against noise In real applications, images
are corrupted by noise. We find that the introduction of
noise introduces a lower limit on the errorE∗ that can be
achieved (see first plot in SFigure 30). This observation
agrees with theoretical analysis (SuppMat 7.3). This
lower bound is entirely due to the noise in the pixel in-
tensity values, while the adaptation of the Implied Reso-
lution FunctionR∗(y) is robust to noise. This is demon-
strated in the second plot in SFigure 30, where noisy
particle intensities are replaced with ground-truth values
for the reconstruction step. Adaptation is still done on
the noisy pixel data. Again, E∗ can be made arbitrarily
small, indicating that the construction of the APR is ro-
bust against imaging noise. This result also agrees with
the theoretical analysis of the impact of errors in L(y)
on the Implied Resolution Function (SuppMat 7.2).

To understand how to best set E in the presence of
noise, we compute the observed peak signal-to-noise
ratio (PSNR) of the reconstructed image and compare
with the PSNR of the original image. Figure 4B shows
that decreasing E to zero does not maximize the PSNR.
Instead, for medium to high quality input images, the

PSNR is highest between an E of 0.08 and 0.15. For
low-quality input images, we find a monotonic rela-
tionship between the PSNR and E, as de-noising from
downsampling dominates. Also, for E < 0.2 the re-
construction error is always less than the noise in the
input image, reflected in a PSNR ratio greater than one.
Therefore, for noisy images with medium to high qual-
ity, there is an optimal range for E between 0.08 and
0.15. In this range, the reconstruction errors are less
than the imaging noise, and the signal-to-noise ratio of
the APR is better than that of the input pixel image, ful-
filling also the second part of RC1.

The noise distribution over the particles in the APR
depends on the original noise distribution of the pixel
image and on the method used to interpolate the particle
intensities from the pixels. In SuppMat 7.6, we provide
both numerical and theoretical results for the interpola-
tion scheme used here. We consider both Gaussian and
Poisson noise on this input pixel image. In both cases
the variance of the noise scales inversely proportional
to the Particle Cell level l with scaling factor 2d(l−lmax),
where d is the image dimension. This is expected, as
coarser levels correspond to more averaging and hence
noise reduction.

Response to image content In Figure 4D we show
how the APR adapts to image content. This adapta-
tion is manifested in the linear relationship between the
number of objects (spheres) randomly placed in the im-
age and the number of particles used by the APR (right
axis). Adaption is linear despite the brightness of the ob-
jects randomly varying over an order of magnitude (see
SuppMat 16.4). Image quality is maintained throughout
(left axis). Figure 4C shows an example of a medium-
quality input image and its APR reconstruction. Fig-
ure 4E shows that the number of particles used by the
APR to represent a fixed number of objects becomes in-
dependent of image size. Also, if pixel resolution and
image size are increased proportionally, the APR ap-
proaches a constant number of particles (SFigure 31).
These results show that the APR adapts proportional to
image content, independent of the number of pixels, ful-
filling RC2.

Local Intensity Scale So far, we have not directly as-
sessed the validity of the Local Intensity Scale σ. In
order to do this, we need a ground-truth reference. In
SuppMat 15.5 we introduce the perfect APR, and the
Ideal Local Intensity Scale σideal that can be calculated
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for synthetic data. This ground-truth representation is
then used to benchmark the APR.

The results in STables 1 and 2 show that the local in-
tensity scale we use is effective over wide range of sce-
narios. However, for crowded images with large con-
trast variations (two orders of magnitude or more), we
find that the Local Intensity Scale over-estimates the dy-
namic range of dim regions that are close to bright re-
gions. This effect is most pronounced in high-quality
images, where alternative formulations of the Local In-
tensity Scale could provide better results.

Computational cost Due to the adaptivity of the
APR, its computational cost depends on image content
through the number of particles, and not on the input
image size N . For a given input image, we define the
Computational Ratio (CR) as:

CR =
number of input pixels

number of output particles
. (3)

We assess the performance of the APR for synthetic im-
ages with numbers of objects roughly corresponding to
CR = 5, 20, 100, representing high, medium, and low
complexity images (SFigure 32, SuppMat 17.1). The
results are given in Table 1. The APR achieved effective
CR values of 5.63, 19.7, and 93.9, respectively.

Benchmarks on real data
We present results for a corpus of 19 exemplar volumet-
ric fluorescence microscopy datasets of different content
and imaging modalities, ranging in size from 160 MB to
4 GB. The datasets and parameters used are described
in STable 3&4 and summary statistics in Table 1. SFig-
ure 33 shows a cross-section of the APR for exemplar
dataset 7, and SVideo 1 illustrates the Implied Reso-
lution Function and APR reconstruction for exemplar
dataset 1. A comparison of the APR with Haar wavelet
thresholding for natural scene images (31) is given in
SuppMat 12.

Memory requirements Calculation of the APR from
an image requires approximately 2.7 times (for 16-bit
images) the size of the original image in memory. Fur-
ther, the maximum size is only limited by available main
memory (RAM) of the machine and by the ability to
globally index the particles using an unsigned 64-bit
integer. Our pipeline has been successfully tested on
datasets exceeding 100 GB (SFigure 35). For a further

proof of concept, exemplar dataset 17 was tiled 200
times to create a 320 GB image. Using the same pa-
rameters as for the original image resulted in an APR of
4.08 GB and CR of 20.19, compared to a CR of 21 for
the original image.

Execution time On our benchmark system, we find
linear scaling inN and an average data rate of 507 MB/s
for transforming images to their APR. This rate corre-
sponds to 3.9 seconds to form the APR from an input
image of size N = 10003. On the exemplars, execution
times range from 0.37 seconds to 8.14 seconds, with an
average of 3.65 seconds. Table 1 summarizes the re-
sults. We find the following distribution of computa-
tion time: the Pulling Scheme on average takes less than
3.5% of the total time while the computation of the gra-
dient magnitude using smoothing B-splines dominates
the execution time, taking up to 59% of the total time.
For details see SuppMat. 19.

The pipeline shows efficient parallel scaling (Am-
dahl’s Law, parallel fraction = 0.95) on up to 47 cores,
achieving data rates of up to 1400 MB/second (SFig-
ure 35). This enables real-time conversion of images
to the APR, as it is faster than the acquisition rate of
microscopes (32, 33).

We conclude that images can be rapidly converted
into the APR with a cost that scales at most linearly with
image size N , fulfilling RC3.

Storage requirements For the fixed-CR datasets, we
observe an average Memory Compression Ratio 2 of 1.4
times the CR. The median MCR of the exemplars is
36.8, and the mean is 129.5. This corresponds to an av-
erage size of the input images of 1.87 GB and the com-
pressed APR of 51 MB. Table 1 summarizes the results
and STable 4 provides by image details.

In the APR compressed files, on average 89% of the
bytes are used to store the particle intensities, implying
that the overhead introduced by the APR data structures
is 11% on average. In addition, the APR particle inten-
sities can be compressed further in a lossy manner using
existing lossy image compression algorithms. As an ex-
ample, in Table 1 we also give the MCR using an adapta-
tion of the within-noise-level (WNL) compression algo-
rithm for large fluorescence images outlined in (30) ap-
plied to both the APR and original pixel image. Details
on the implementation, benchmarks on synthetic data

2MCR = (Size of the input image in Bytes)/(Size of the compressed
APR in Bytes)
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Computational
Ratio (CR)

Raw Image
Size (GB)

Compressed
APR GB

MCR of APR MCR of APR-
WNL, q=2

MCR of
Pixels-WNL,
q=2

Pipeline
Time (s)

Pulling Scheme
Runtime (s)

CR5 5.63 (0.02) 1.024 0.129 (0.0006) 7.9 (0.04) 19.6 (0.97) 5.4 (0.36) 2.34 (0.086) 0.104 (0.002)

CR20 19.7 (0.13) 1.024 0.036 (0.0002) 28.4 (0.19) 64.4 (2.03) 5.69 (0.62) 2.01 (0.07) 0.04 (0.003)

CR100 93.9 (1.6) 1.024 0.007 (0.0001) 139.9 (2.1) 282 (66.4) 5.85 (0.75) 1.87 (0.08) 0.027 (0.005)

Exemplars Mean 51.1 (89.3) 1.869 (1.38) 0.051 (0.053) 129.5 (284) 297.8 (593) 95.8 (166) 3.65 (2.19) 0.10 (0.08)

Exemplars Median 22.7 1.258 0.027 36.8 107.1 33.1 2.19 0.066

Table 1: Summary statistics of the APR benchmarks on synthetic and real-world images. Results are shown for synthetic images with fixed
CR=5,20,100 and for 19 real-world exemplar datasets (see STable 3). For the exemplars, we report the means, standard deviation (brackets),
and medians of the values over all exemplar images. For the synthetic fixed-CR benchmarks, the effective CR and the Memory Compression
Ratios (MCR) are averaged over image sizes from 2003 to 8003 and the values for absolute runtimes and storage requirements are given for
images of size 8003. For comparison, we also report the MCR using an implementation of within-noise-level (WNL) compression (30) of both
the APR and pixel images for the same parameter values (see SuppMat 20.1). We also show the time taken to transform the images to the APR
on the benchmark machine, and the runtime of the Pulling Scheme alone.

are provided in SuppMat 20.1. On synthetic data, for
set parameters, we find the APR and pixel image pro-
vide the same image quality, while the APR increases
the compression ratio by five times. These results high-
light that the APR compliments rather than replacing ex-
isting image compression techniques.

Hence, the APR can be efficiently compressed with
a file size proportional to the image content, fulfilling
RC2. Unlike compression techniques, the APR is an
image representation that can be leveraged to accelerate
downstream processing tasks, including compression,
without going back to the original pixel image.

Image Processing on the APR
We show how the APR reduces the memory and com-
putational cost of downstream image-processing tasks
(RC4). Once we have transformed the input image into
an APR, the input image is no longer needed. All pro-
cessing, storage, and visualization can be done directly
on the APR.

Image-processing methods are always developed us-
ing a certain interpretation of images. Just like pixels,
one can also interpret and use the APR in different ways
depending on the processing task. These interpretations
align with those commonly used in pixel-based process-
ing. Figure 5A-D outlines the four main interpretations
of the APR.

Performance metrics
The APR can accelerate existing algorithms in two
ways: First, by decreasing the total processing time
through reducing the number of operations that have to

be executed. Second, by reducing the amount of mem-
ory required to run the algorithm. The relative impor-
tance of the two, and the degree of reduction, depends
on the specific algorithm and its implementation. We
use quantitative metrics to evaluate the improvements
for different algorithms and input images.

The first evaluation metric relates to the computa-
tional performance of the algorithm. For a given algo-
rithm and implementation, we define the speed-up (SU)
as:

SU =
Processing time of the algorithm on pixels
Processing time of the algorithm on APR

. (4)

It is insightful to relate the SU to the CR by SU = CR
* (Pixel-Particle Speed Ratio) (PP), where PP = (Time
to compute the operation on one pixel)/(Time to com-
pute the operation on one particle). The value of PP
depends on many factors, including memory access pat-
terns, data structures, hardware, and the absolute size
of the data in memory. Consequently, even for a given
algorithm running on defined hardware, the PP is a func-
tion of the input image size N . Therefore, for tasks
where PP<1, as in most low-level vision tasks, there
is a minimum value of CR for which the algorithm is
faster on the APR than on pixels.

For an algorithm run on a pixel image, in most cases
the Memory Cost (MC) in bytes scales linearly with
the number of pixels N and the number of algorithm
variables, as MC=(Number of variables)*(Data type in
Bytes)*N . The memory cost of the APR

MC = Np
(
Number of variables× Data type in bytes

+ Cost of data structure per particle
)

where Np is the number of particles, and the cost of the
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Figure 5: Interpretations of the APR for image processing. A. The APR can be interpreted as a spatial partition defined by the Particle
Cells in V , or by the set of particles P with positions xp. This interpretation relates to the concept of super-pixels (13). B. The APR can be
interpreted as a continuous function approximation where the intensity value can be reconstructed at each location y, also between particles
and pixels, relating to smooth particle function approximations (34).C. The APR can be interpreted as a graph, where the particles are nodes
and edges link neighboring particles (SuppMat 21). This relates the APR to graphical models often used on pixel images (35). D. The APR can
be interpreted as a pruned binary tree (quad-tree in 2D, oct-tree in 3D) with links between parent and child Particle Cells. This relates the APR
to wavelet decompositions (17), image pyramids (19), and tree-based methods (36). E-H. While particles store local fluorescence intensity,
just like pixels (E), they also provide additional information that is not available on the pixels. This includes the Particle Cell level containing
information about the local level of detail in the image (F), the Particle Cell type encoding the structure of the image (G), and the Particle Cells
naturally decomposing the image domain in a content-adaptive way (H).

data structure per particle depends on N . We find an es-
timated average of 8 bits per particles overhead for the
Sparse APR data structure. As the number of algorithm
variables increases, the overhead of the APR is amor-
tized so that the reduction in memory cost approaches
the CR.

Image Processing Performance Bench-
marks

We analyze two low-level and one high-level image-
processing task. These are neighbor access and filter-
ing as low-level tasks, and image segmentation as high-
level task. The low-level tasks represent a lower bound
on the benefits of the APR due to their simple operations
and access patterns, which are best suited for processing
on pixels. The segmentation task in contrast provides a
representative practical example of microscopy image
analysis.

For these three benchmarks, we provide results for the
computational and memory metrics for three fixed-CR
datasets with input images from N = 2003 up to N =
10003, and for all real-world exemplar datasets. The

results of all benchmarks are summarized in Table 2.
SuppMat 22 describes the benchmark protocols.

Neighbor Access For each pixel or particle, the task
involves averaging the intensities of all face-connected
neighbors (see SuppMat 22.1 for details). In the APR,
neighbors are defined by the particle graph, as shown in
Figure 5C and described in SuppMat 21. We bench-
mark two forms of neighbor access: Linear iteration
loops over all neighbors in sequential order. Random
access visits neighbors in random order, irrespective of
how they are stored in memory.

For linear iteration, the APR shows low speed-ups.
It is even slower than pixel operations for images with
CR=5 and for four of the exemplar datasets (Table 2,
group 1). This is because linear iteration is optimally
suited to pixel images. However, the APR provides con-
sistently higher speed-ups for random neighbor access,
especially for high CRs. This is likely due to the smaller
overall size of the APR improving cache efficiency.

The total memory cost of the APR reflects the CR of
the dataset. This provides significant memory cost re-
ductions across all benchmark datasets for both the lin-
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Figure 6: Image processing using the APR. A. Comparison of an example image (left, exemplar dataset 7) with its piecewise constant APR
reconstruction (right). B. Comparison of the maximum-intensity projection of a direct 3D APR ray-cast (top) with the maximum projection of
the pixels (bottom) for exemplar dataset 17 (full image see SFigure 45). C. Comparison of the intensity-gradient magnitude estimated using
the Adaptive APR Filter (left, SuppMat 22.4) and central finite differences over the pixels (right) for exemplar dataset 6 (Tomancak Lab, MPI-
CBG). D. Direct 3D particle rendering of Zebrafish nuclei (exemplar dataset 7) using a custom, scenery-based (37) renderer. E. APR Volume
rendering of a 3D image-segmentation result, colored by depth, computed using graph-cut segmentation directly on the APR, as described in
SuppMat 22.3.3 (exemplar dataset 13, cf. B). Segmentation on the APR took 5.5 seconds, and was not possible due to memory requirements
on the original pixel image using our benchmark machine. (A,B,D,E courtesy of Huisken Lab, MPI-CBG & Morgridge Institute for Research.)
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Speed Up (SU) Time APR (s) Time Pixels (s) PP Memory Pixels (GB) Memory APR (GB) MRR

Linear Neighbor Iteration

CR5 0.55 (0.02) 1.86 (0.07) 1.02 (0.0002) 0.097 (0.003) 3.072 0.599 (2.7) 5.12 (0.02)

CR20 1.9 (0.09) 0.54 (0.03) 1.02 (0.002) 0.096 (0.004) 3.072 0.181 (1.0) 16.9 (0.09)

CR100 7.1 (0.5) 0.14 (0.009) 1.02 (0.007) 0.076 (0.005) 3.072 0.053 (0.0005) 60.2 (2.3)

Exemplars Mean 4.06 (5.7) 0.86 (0.5) 1.83 (1.3) 0.094 (0.01) 5.61 (4.2) 0.278 (0.28) 37.5 (56)

Random Neighbor Access

CR5 0.71 (0.03) 15.4 (0.2) 11.0 (0.4) 0.126 (0.005) 3.072 0.599 (2.7) 5.12 (0.02)

CR20 3.52 (0.3) 3.23 (0.05) 11.4 (0.8) 0.178 (0.01) 3.072 0.181 (1.0) 16.9 (0.09)

CR100 24.8 (0.8) 0.44 (0.01) 11.01 (0.3) 0.26 (0.007) 3.072 0.053 (0.0005) 60.2 (2.3)

Exemplars Mean 11.57 (23.6) 7.29 (10.1) 21.4 (16) 0.17 (0.05) 5.61 (4.2) 0.278 (0.28) 37.5 (56)

Image Filtering

CR5 7.36 (1.2) 1.36 (0.009) 8.02 (0.2) 1.26 (0.2) 4.10 0.93 (0.003) 4.38 (0.04)

CR20 14.82 (3.7) 0.76 (0.01) 8.07 (0.3) 0.77 (0.2) 4.10 0.30 (0.002) 12.82 (0.9)

CR100 31.10 (13) 0.57 (0.003) 7.96 (0.3) 0.35 (0.15) 4.10 0.09 (0.0002) 36.85 (6.7)

Exemplars Mean 12.27 (3.0) 1.24 (0.93) 14.13 (9.8) 0.51 (0.33) 7.48 (5.5) 0.36 (0.28) 24.49 (19)

Image Segmentation

CR5 5.10 (0.7) 1.87 (0.02) 8.86 (0.09) 0.86 (0.04) ≈68.5∗ 12.57 (0.08) 5.51 (0.14)

CR20 18.30 (2.6) 0.48 (0.003) 8.83 (0.08) 0.95 (0.07) ≈68.5∗ 3.75 (0.02) 18.18 (0.3)

CR100 85.3 (12) 0.10 (0.001) 8.78 (0.09) 0.97 (0.06) ≈68.5∗ 0.80 (0.003) 84.09 (2.9)

Exemplars Mean N/A 6.99 (5.9) N/A N/A ≈385∗ (286) 13.54 (11.7) 39.72 (40)

Table 2: Summary statistics of the image-processing benchmarks on synthetic and real-world images. For the exemplars, we report
the means (standard deviation in brackets) of the values over all exemplar images. For the synthetic fixed-CR datasets, the speed-up (SU),
Pixel-Particle Speed Ratio (PP), and Memory Reduction Ratio (MRR) are averaged over image sizes from 2003 to 10003; absolute timings
and memory requirements are given for images of size 8003. Graph-cut segmentation on pixels was not possible for 8003 images as the
memory requirement exceeded the 64 GB available on the benchmark machine. The corresponding entries in the table (marked with ∗) are
extrapolations from benchmarks run on smaller images and the SU, PP, and pixel timing for the exemplars could not be determined in this case
(N/A). See SuppMat 22 for a detailed descriptions of the benchmarks.
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ear and random neighbor access patterns.

Image filtering We consider the task of filtering the
image with a Gaussian blur kernel (see SuppMat 22.2).
We exploit the separability of the kernel and perform
three consecutive filtering steps using 1D filters in each
direction. On the APR, this requires locally evaluating
the function reconstruction. For simplicity, we use the
piecewise constant reconstruction method (see Supp-
Mat 10). The benchmark results are shown in Table 2,
group 3. Directly filtering the APR consistently outper-
forms the pixel-based pipeline, both in terms of memory
cost and execution time.

In SuppMat 22.2.2 we analyze the results in detail and
find that the APR is most appropriate if the filtering re-
sult looks similar to the original image, such that the
same set of content-adapted particles is also suitable to
represent the filtered image. SFigure 40 illustrates this,
showing how for a small blur the APR filter has higher
PSNR than the pixel filter. For larger blurs this is re-
versed, because the specific APR adapted to the input
image is no longer suitable to represent the filtered im-
age. Care must be taken when designing algorithms, as
not all approaches are equally suited to the APR.

Image segmentation We perform binary image seg-
mentation using graph cuts, using the method and im-
plementation of Ref. (35) to compute the optimal fore-
ground/background segmentation for both APR and
pixel images. When computing the cut energies, we ex-
ploit the additional information provided by the particle
cell level, type, and local min-max range. To allow di-
rect comparison with the pixel-based segmentation, we
interpolate all energies calculated on the APR to pix-
els and determine the cuts over the pixel image using
the same energies. For both APR and pixel images, a
face-connected neighbourhood graph is used. Given the
energy calculations are identical, we benchmark the ex-
ecution time and memory cost of the graph-cut solver.
The results are shown in Table 2, group 4. For the APR
we find speed-ups directly reflecting the CR.

Using the APR, all examplar images can be seg-
mented without problems, illustrating the benefits of the
reduced memory cost of the APR, while pixel images
can only be segmented for sizes N ≤ 5503 on our
benchmark machine with 64 GB RAM.

We validate the APR segmentations by comparing
both the APR and pixel-based segmentations to ground
truth using the Dice coefficient (38). Across datasets,

we find that the Dice coefficients are not statistically sig-
nificantly different (p-value: 0.92, Welch’s t-test). We
provide a representative example in SVideo 2 and show
a 3D rendering of a segmentation in Figure 6E. For more
details, see SuppMat 22.3.

Novel Algorithms
The APR provides additional information about the im-
age that is not contained in pixel representations. This
information can be exploited in image-processing al-
gorithms, as illustrated in the segmentation example
above. In addition, it can also be used to design entirely
novel, APR-specific algorithms, as demonstrated in the
following example.

Adaptive APR filter We define a discrete filter over
neighboring particles in the APR particle graph. Since
the distance between neighboring particles varies across
the image depending on image content, this amounts
to spatially adaptive filtering with the filter size auto-
matically adjusting to the content of the image. On the
APR, this only requires linear neighbor iteration, while
an adaptive pixel implementation would be significantly
more complex.

SuppMat 22.4 describes the adaptive APR filter in de-
tail. SFigure 42 shows synthetic results for an adaptive
blurring filter, and SFigure 43 for a filter that adaptively
estimates the intensity gradient magnitude. In both ex-
amples, the adaptive APR-filtered results have higher
PSNR than results from corresponding non-adaptive
pixel filters, also demonstrated in Figure 6C.

Visualization
Images represented using the APR can directly be visu-
alized without going back to pixels. The APR image can
be visualized using both traditional and novel visualiza-
tion methods. We provide examples of the following
visualization methods:

Visualization by slice, Figure 6A and SVideo 1 show
examples of a slice-wise APR reconstruction in compar-
ison with the pixel image.

Raycasting for direct 3D visualization of an APR.
Figure 6B and SVideo 3 show a perspective maximum-
intensity projection in comparison with the same ray-
cast of the original pixel image. The resulting visual-
izations are visually indistinguishable. APR raycasting
only requires storing and computing on the APR, reduc-
ing memory and computational costs proportionally to
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the CR of the image, making direct visualisation of very
large datasets possible.

Particle rendering, where we directly visualize the
particles of the APR as glyphs (see Figure 3 and Fig-
ure 5; Figure 6D and SVideo 4&5 additionally show ex-
amples of particle renderings in 3D using open-source
rendering toolkit scenery (37)).

For more details on visualisation, see SuppMat 22.5.

Image Processing Summary
Across all benchmarks and exemplar datasets other than
the worst-case example of linear neighbor access, pro-
cessing directly on the APR resulted in smaller execu-
tion times and memory costs. In most cases, the reduc-
tions are directly proportional to the computational ratio
(CR), hence fulfilling RC4. Moreover, in the examples
of visualization and segmentation, the memory cost re-
duction of the APR enabled processing of data sets that
would not otherwise have been possible on our bench-
mark machine. The APR has a range of interpretations
that align with those of pixel images, allowing direct ap-
plication of established image-analysis frameworks to
the APR. For algorithms that require a locally isotropic
neighborhood, the anisotropic local neighborhood of the
APR graph can be avoided by using a particle-wise
isotropic patch reconstruction, enabling also these algo-
rithms to directly run on the APR.

Also, we highlight that the APR may simplify pro-
cessing tasks by providing additional information about
the structure of the image through the Particle Cell level
and type. This structural information can be leveraged
in existing algorithms, as shown for segmentation, or
it can be used to design novel algorithms, such as the
adaptive APR filter and APR ray-casting visualization.
As expected, the noise distribution on the particles is
different from that of the original pixels and depends
on the Particle Cell level (see SuppMat 7.6). Therefore,
noise terms or regularizers in existing image-processing
models may have to be adjusted accordingly.

Discussion and Conclusion
We have introduced a novel content-adaptive image rep-
resentation for fluorescence microscopy, the Adaptive
Particle Representation (APR). The APR is inspired by
how the human visual system effectively avoids the data
and processing bottlenecks that plague modern fluores-
cence microscopy, particularly for 3D imaging. The

APR combines aspects of previous adaptive-resolution
methods, including wavelets, super-pixels, and equidis-
tribution principles in a way that fulfills all representa-
tion criteria set out in the introduction. The APR is com-
putationally efficient, suited for real-time applications at
acquisition speed, and easy to implement.

We presented the ideas and concepts of the APR in
1D for ease of illustration, with all naturally extending
to higher dimensions. The APR resamples an image by
adapting a set of Particle Cells V and a set of particles
P to the content of an image, taking into account the
Local Intensity Scale σ similar to gain control in the
human visual system. The main theoretical and algo-
rithmic contribution that made this possible with a com-
putational cost that scales linearly with image contents
is the Pulling Scheme. The Pulling Scheme guarantees
sub-optimal image representations within user-specified
relative intensity deviations.

We verified accuracy and performance of the APR us-
ing synthetic benchmark images. The analysis showed
that all theoretical results hold in practice, and that the
number of particles used by the APR scales with image
content while maintaining image quality (RC1). Fur-
ther, we showed that although image noise places a
limit on representation accuracy, there exists an opti-
mal range for the relative error threshold E. In this
range, the reconstruction error for noisy images is al-
ways well within the imaging noise level (RC1). More-
over, we found that the number of particles is inde-
pendent of the original image size, with computational
and memory costs of the APR proportional to the in-
formation content of the image (RC2). We showed
how pixel images can rapidly be transformed to the
APR, and efficiently stored both in memory and in files
(RC3). We have demonstrated that the APR benefits
both in terms of execution time and memory require-
ments can be leveraged for a range of image-processing
tasks without ever returning to a pixel image, with min-
imal changes to the original pixel algorithms (RC4). Fi-
nally, we showed how the adaptive sampling and struc-
ture of the APR inspires the development of novel,
content-adaptive image-processing algorithms.

Taken together, the APR meets all four Representa-
tion Criteria (RC) set out in the introduction. We be-
lieve that the gains of the APR will in many cases be
sufficient to alleviate the current processing bottlenecks.
In particular, image-processing pipelines using the APR
would be well suited for high-throughput experiments
and real-time processing, e.g., in smart microscopes
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(9,39). However, the APR is sub-optimal with respect to
the number of particles used. This sub-optimality results
from the conservative limiting assumptions required to
derive the efficient Pulling Scheme, and the generality
of the Reconstruction Condition. It is seen by the fact
that the APR particle properties could be represented by
a Haar wavelet transform (17) with non-zero coefficients
whose number is either equal to, or less than, the number
of particles in the APR while allowing exact reconstruc-
tion of the APR particle properties (SuppMat 12).

The use of adaptive representations of images (22–
24) and its motivation by the human visual system
(13, 18) are not new. The APR shares several principles
and ideas with established adaptive representations. The
Resolution Function R(y) of the APR, e.g., is related
to the oracle adaptive regression method (40) and the
derivation and form of the Resolution Bound are related
to ideas originally introduced in equidistribution meth-
ods for splines (41–43), which also inspired the work
here (44). The Reconstruction Condition for a constant
Local Intensity Scale relates to infinity norm adapta-
tion (45) for wavelet thresholding in adaptive surface
representations. Further, the use of a powers-of-two de-
composition of the domain is central to many adaptive-
resolution methods (17, 19, 36, 46) and its use here was
particularly inspired by Ref. (47). Further, the adaptive
placement of the particles bears some visual similar-
ity to half-toning methods and techniques based on the
Floyd-Steinberg error-diffusion algorithm (48). How-
ever, the mathematical foundations of the APR and the
way it is computed differ. Despite these relations to ex-
isting methods, the APR uniquely fulfills all representa-
tion criteria and extends many of the previous concepts.
Core novelties of the APR include the spatially varying
Local Intensity Scale, the broad class of reconstruction
methods available, similarity to pixel images by local
isotropic patch reconstruction, theoretical bounds on the
representation accuracy, and the ability to combine ex-
isting compression schemes with the APR.

Outlook
The APR has the potential to completely replace pixel-
based image-processing pipelines for the next genera-
tion of fluorescence microscopes. We envision that the
APR is immediately formed, possibly after image en-
hancement (49), on the acquisition computer or even
on the camera itself. Following this, all data trans-
fer, storage, visualization, and processing can be done

using the APR, providing memory and computational
gains across all tasks. Although, there are also con-
texts when the exact pixel noise distribution of the orig-
inal image conveys information, and therefore the APR
is not appropriate. Further, due to regulatory require-
ments, archiving the original image, or its pixel-wise
difference to the APR, may still be required. Also,
the realization of such pipelines requires further al-
gorithm and software development including integra-
tion with current microscope systems, image databases
(50), and image-processing tools (51). This is achieved
through wrappers of the provided C++ Library LibAPR
(github.com/cheesema/LibAPR).

Here, we presented a particular realization of an APR
pipeline. We foresee alternative pipelines, e.g., using
deep learning approaches (52) to provide improved esti-
mation of the Local Intensity Scale, the image intensity
gradient, and the smooth image reconstruction. Just as
in space, the APR can also be used to adaptively sample
time. Such temporal adaptation can lead to a multiplica-
tive reduction in memory and computational costs com-
pared to those presented here, allowing even faster APR
computations. Further, the APR can be extended to al-
low for anisotropic adaptation using rectangular particle
cells and anisotropic particle distributions within each
cell.

Given the wide success of adaptive representations
in scientific computing, the unique features of the APR
could be useful also in non-imaging applications. This
includes applications to time-series data, where the APR
could provide an adaptive regression method (40), and
to surface representation in computer graphics (45).
Further, the APR could be used in numerical simulations
for efficient mesh generation or as an adaptive mesh-free
collocation method for numerically solving partial dif-
ferential equations (44, 53–55).
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