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1. Image analysis 
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Patient Images:
- LUAD patients
- LUSC patients
Format :
- DICOM 

Modality :
-CT scans

Segmentation 
- Manually 
- Tumor mask

3D analysis

2D extension of the images space 
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1. Image analysis – Preprocessing
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reading [[0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0] 
[0 0 0 ... 0 0 0] ... [0 0 0 ... 0 0 0] 
[0 0 0 ... 0 0 0] [0 0 0 ... 0 0 0]]

3D analysis

Interpolation to voxelsize 1mm3

Cropped to 64*64*64

2D analysis

Extract CT slices with tumor
in the mask 
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1. Image analysis – 3D analysis  
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Existing :
Deep learning for lung cancer
prognostication:: 

- 3D convolutional network 
- 2 year overall survival classification
- Based on CT images
- Input :

- 50x50x 50 boundary box around the tumor
- Output: binary classifier

Source : Hosny, Ahmed, et al. "Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study." PLoS medicine 15.11 (2018): e1002711.
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1. Applying the model on our data 
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Check the network for its generalisability:
• Check the survival for our dataset 

• Our dataset contains in total 21 patients with survival data 
• Extract the CT segments and downsize it from 64x64x64 to

50x50x50 (required input).
• Accuracy : 43 %

input
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1. Transfer learning for 3D analysis 
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Transfer Learning to our LUAD and LUSC classification task
• Input size changed to 64x64x64

• Input is the CT crop

input

Source : Hosny, Ahmed, et al. "Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study." PLoS medicine 15.11 (2018): e1002711.
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1. Transfer learning for 3D analysis 
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Transfer Learning to our LUAD and LUSC classification task
• Remove everything after (and including) the  last max pooling layers 

in the network.

Source : Hosny, Ahmed, et al. "Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study." PLoS medicine 15.11 (2018): e1002711.
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1. Transfer learning for 3D analysis – preliminary 
results - limited HU and normalized
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Validation

Training



Universitätsmedizin 
Rostock

1. Extension of the image sample 
space progressive generative 
adversarial networks

• Using an established progressive 
generative adversarial networks

• Trained the network on our dataset from 
scratch  
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Source: Karras, Tero, et al. "Progressive growing of gans for improved quality, stability, and variation." arXiv preprint arXiv:1710.10196 (2017).
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1. GAN output  – CT after 14 h training
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Fakes Real

Challenge : Where is the tumor ? 

Network finds the tumor itself 

Training network with CT and masks to detect masks
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1. Image space extension – Further work

Training network with CT and masks to 

detect masks
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Shin et al. performed medical image synthesis for brain MRI’s 

Source : Shin, Hoo-Chang, et al. "Medical image synthesis for data augmentation and anonymization using generative adversarial networks." International Workshop on Simulation and
Synthesis in Medical Imaging. Springer, Cham, 2018.

Challenges: Adapt this to our CT scans 
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2. Classification of patients based on multiple 
datasets
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Original & newly 
generated images

Integration 



Universitätsmedizin 
Rostock

2. Binary Classification based on multiple
datasets
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Gen
es

miR
NAs

two

MLP with:
- 3 Dense layers
- 3 Dropout layers
- 2 Batch

normalization
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2. Multi Class based on two datasets
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Again change of research question towards : Tumor stage classification with T stages
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3. Clustering of patients based on molecular 
profile

miR
NAs Variational Autoencoder 

Input 

Dense Layer 1024

Dense Layer 128

Dense Layer 512

Dense Layer 1024

! 32 " 32

Sample

Output

LUSC
Dense Layer 512

Dense Layer 128

Activation function relu

Desired clustering in 4 classes: 
- T1
- T2
- T3
- T3 
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3. Training of variational Autoencoder 
Input 

Dense Layer 1024

Dense Layer 128

Dense Layer 512

Dense Layer 1024

! 32 " 32

Sample

Output

Dense Layer 512

Dense Layer 128

Activation function relu



Universitätsmedizin 
Rostock

Institute for Biostatistics and Informatics in Medicine and Ageing 
Research

3. Test of variational Autoencoder 
Input 

Dense Layer 1024

Dense Layer 128

Dense Layer 512

Dense Layer 1024

! 32 " 32

Sample

Output

Dense Layer 512

Dense Layer 128

Activation function relu
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Future of the project
Gen

es
miR

NAs

Pretrained 
network 

Pretrained 
network 

One or multiple dense layers with dropout and batch normalization 

Using transfer learning on our own build networks

LUAD / 
LUSC
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