smartBKG

Selective Background Monte Carlo Generation

The Skimulators:

James Kahn (KIT), Kilian Lieret (LMU) Andreas Lindner (LMU), Emilio Dorigatti (LMU)

September 16, 2019

Project Overview

- Simulation of particle collisions computationally expensive, but most of the results are uninteresting and thrown away
- ▶ Idea: Can we figure out whether a collision is uninteresting at an early stage?

Project Overview

- Simulation of particle collisions computationally expensive, but most of the results are uninteresting and thrown away
- ▶ Idea: Can we figure out whether a collision is uninteresting at an early stage?
 - Skip expensive steps

Dataset

Three categories of decay data:

- \blacktriangleright Full charged B meson reconstruction
- \blacktriangleright Full neutral B meson reconstruction
- \blacktriangleright Time-dependent CP violation

For each category:

 $\sim 300,000$ particle collision processes with binary classification labels

$\Upsilon(4S)$ (300553) B^0 (-511)	Feature	Definition
$ \begin{array}{c} J/\psi & (443) \\ \mu^+ & (-13) \\ \mu^- & (13) \\ K_S^0 & (310) \\ pi^- & (-211) \\ pi^+ & (211) \\ \bar{D}^0 & (-421) \\ pi^- & (-211) \\ K_+ & (321) \\ pi^- & (-211) \\ \mu^+ & (-13) \end{array} \right) $	PDG code Mother PDG code Mass Charge Energy Momentum Production time Production vertex	Identifier of particle type and charge. Particle parent PDG code. Particle mass in GeV/c ² . Electric charge of the particle. Particle energy in GeV. Three momentum of the particle in Gev/c. Production time in ns relative to $\Upsilon(4S)$ production. Coordinates of particle production vertex.
ν_{μ} (14)	Status bit	Bitmask representing MC production conditions.

Dataset

Three categories of decay data:

- \blacktriangleright Full charged B meson reconstruction
- \blacktriangleright Full neutral B meson reconstruction
- ▶ Time-dependent *CP* violation

For each category:

 $\sim 300,000$ particle collision processes with binary classification labels

B ⁰ (-511)		
$\begin{array}{c} \mu^+ & (-13) \\ \mu^- & (13) \\ K_S^0 & (310) \\ pi^- & (-211) \\ D^0 & (-211) \\ D^0 & (-421) \\ pi^- & (-211) \\ K^+ & (321) \\ pi^- & (-211) \\ \mu^+ & (-13) \\ \end{array}$	PDG code Mother PDG code Mass Charge Energy Momentum Production time Production vertex Status bit	Identifier of particle type and charge. Particle parent PDG code. Particle mass in GeV/c ² . Electric charge of the particle. Particle energy in GeV. Three momentum of the particle in Gev/c. Production time in ns relative to $\Upsilon(4S)$ production. Coordinates of particle production vertex. Bitmask representing MC production conditions.

Goals

Previous work by James Kahn:

▶ Convolutional neural networks: residual, recurrent, vanilla...

Goals for this week:

- ▶ Implement graph convolution networks
- ▶ Decorrelate network from selected kinematics

Goals

Previous work by James Kahn:

▶ Convolutional neural networks: residual, recurrent, vanilla...

Goals for this week:

- ▶ Implement graph convolution networks
- ▶ Decorrelate network from selected kinematics

Original Graph Convolutional Networks (GCN)

Propagation rule of layer activations $H^{(l)}$

Thomas N. Kipf, Max Welling, Semi-Supervised Classification with Graph Convolutional Networks (ICLR 2017)

Modified GCN

$$H^{(l+1)} = \sigma \left(H^l \left(\tilde{D}^{-1} \tilde{A} \tilde{D}^{-1} W_1^{(l)} \right)^T W_2^{(l)} \right)$$

Intuition: custom weights for each node, considering neighbors

- Weight vector for every node: W_1 (size: $N \times F$)
- ▶ Multiply by $\tilde{D}^{-1}\tilde{A}\tilde{D}^{-1} \longrightarrow$ weight vector for every node as the average of the vectors of neighboring nodes (output size: $N \times F$ again)
- ▶ Transpose and multiply by $W_2 \longrightarrow$ custom dense layer for each node (W_2 size: $N \times U$, result size: $F \times U$)
- Multiply by H: transform every node in the previous layer with its own custom layer (H size: $N \times F$, result size: $N \times U$)

Modified Node Aggregation

- ▶ Soft attention with weights given by D and values given by tanh(E)
- $\blacktriangleright~E,~D:$ Output of dense layers applied independently to the features of each node

Adapted from: Yujia Li, Richard Zemel, Marc Brockschmidt, Daniel Tarlow, *Gated Graph Sequence Neural Networks*, ICLR 2016

Features

Green: 'pass'. red: 'fail'

PDG

Features II

x, y, z coordinates: Hard to normalize

0.8

1.0

6

Architecture

- p = GraphConvolution(128, kernel_regularizer=regularizers.l2(l2_strength))([feature_input, laplacian_input])
- p = layers.LeakyReLU()(p)
- p = GraphConvolution(128, kernel_regularizer=regularizers.l2(l2_strength))([p, laplacian_input])
- p = layers.LeakyReLU()(p)
- p = NodeAggregation(256, kernel_regularizer=regularizers.l2(l2_strength))(p)
- m = layers.Concatenate()([pdg_l, feature_input])
- m = layers.LeakyReLU()(layers.Conv1D(128, 5)(m))
- m = layers.LeakyReLU()(layers.Conv1D(128, 5)(m))
- m = layers.LeakyReLU()(layers.Conv1D(128, 5)(m))
- m = layers.GlobalAveragePooling1D()(m)

```
l = layers.Concatenate()([m, p])
```

```
l = layers.Dropout(0.5)(l)
```

- l = layers.LeakyReLU()(layers.Dense(512, kernel_regularizer=regularizers.l2(l2_strength))(l))
- l = layers.LeakyReLU()(layers.Dense(256, kernel_regularizer=regularizers.l2(l2_strength))(l))

```
l = layers.Dropout(0.3)(l)
```

l = layers.LeakyReLU()(layers.Dense(128, kernel_regularizer=regularizers.l2(l2_strength))(l))

```
l = layers.LeakyReLU()(layers.Dense(32, kernel_regularizer=regularizers.l2(l2_strength))(l))
```

output_layer = layers.Dense(1, activation='sigmoid')(l)

- ► Class weights
- ► Early stopping
- ▶ Reduce learning rate on plateau
- ▶ Model checkpoint save only best

Results

0.9

0.8

0.2

0.1

0.0 -

0.0 0.1

0.2

0.3 0.4 0.5 0.6 0.7 0.8

False Positive Rate

- Train on random subset of 50k processes
- Test on 40k independent processes

Next steps

- ▶ Bias quantification/mitigation
- ▶ Hyperparameter optimisation
- ▶ Train on large dataset and other skims
- ▶ Talk accepted at CHEP2019 (Computing in High Energy Physics) proceedings

Backup

Results (Smaller network)

