smartBKG
 Selective Background Monte Carlo Generation

The Skimulators:
James Kahn (KIT), Kilian Lieret (LMU)
Andreas Lindner (LMU), Emilio Dorigatti (LMU)

September 16, 2019

Project Overview

- Simulation of particle collisions computationally expensive, but most of the results are uninteresting and thrown away
- Idea: Can we figure out whether a collision is uninteresting at an early stage?

Project Overview

- Simulation of particle collisions computationally expensive, but most of the results are uninteresting and thrown away
- Idea: Can we figure out whether a collision is uninteresting at an early stage?
- Skip expensive steps

Dataset

Three categories of decay data:

- Full charged B meson reconstruction
- Full neutral B meson reconstruction
- Time-dependent $C P$ violation

For each category:
$\sim 300,000$ particle collision processes with binary classification labels

$\begin{aligned} & \Upsilon(4 S)(300553) \\ & B_{B^{0}(-511)}\left(\begin{array}{l} (-51) \end{array}\right. \end{aligned}$		Feature	Definition
J/ $/{ }^{+}$(443)		PDG code	Identifier of particle type and charge.
$\begin{array}{ll} \mu^{+} & (-13) \\ \mu^{-} & (13) \end{array}$		Mother PDG code	Particle parent PDG code.
$\begin{array}{cc} K_{S}^{0} & (310) \\ n_{j} \end{array}$		Mass	Particle mass in $\mathrm{GeV} / \mathrm{c}^{2}$.
${ }_{\text {po }}{ }^{\text {p }}{ }^{+}$(2111)		Charge	Electric charge of the particle.
$\begin{gathered} B^{0^{r}}(511) \\ \bar{D}^{0}(-421) \end{gathered}$		Energy	Particle energy in GeV .
$\mathrm{pi}^{-}(-211)$		Momentum	Three momentum of the particle in Gev/c.
$\begin{aligned} & \mathrm{K}^{+}(321) \\ & p i^{-}(-211) \end{aligned}$		Production time	Production time in ns relative to $\Upsilon(4 S)$ production.
$\mu^{+} \quad(-13)$		Production vertex	Coordinates of particle production vertex.
ν_{μ} (14)	,	Status bit	Bitmask representing MC production conditions.

Dataset

Three categories of decay data:

- Full charged B meson reconstruction
- Full neutral B meson reconstruction
- Time-dependent $C P$ violation

For each category:
~300, 000 particle collision processes with binary classification labels

$\begin{aligned} & \Upsilon_{B^{0}(4)(-511)}(300553) \end{aligned}$	Feature	Definition
J/ ψ^{+}(443)	PDG code	Identifier of particle type and charge.
$\begin{array}{ll}\mu^{+} \\ \mu^{-} & (13)\end{array}$	Mother PDG code	Particle parent PDG code.
$K_{S}^{0} i^{-}(310)$	Mass	Particle mass in $\mathrm{GeV} / \mathrm{c}^{2}$.
${ }_{p i^{+}}{ }^{+}$(211)	Charge	Electric charge of the particle.
$\begin{gathered} B^{B^{0}}(511) \\ \bar{D}^{0}(-421) \end{gathered}$	Energy	Particle energy in GeV.
$\mathrm{pi}^{-}(-211)$	Momentum	Three momentum of the particle in Gev/c.
$\begin{aligned} & K^{+} \quad(321) \\ & n i^{-}(-211) \end{aligned}$	Production time	Production time in ns relative to $\Upsilon(4 S)$ production.
$\mu^{+}(-13)$	Production vertex	Coordinates of particle production vertex.
ν_{μ} (14)	Status bit	Bitmask representing MC production conditions.

Goals

Previous work by James Kahn:

- Convolutional neural networks: residual, recurrent, vanilla...

Goals for this week:

- Implement graph convolution networks
- Decorrelate network from selected kinematics

Goals

Previous work by James Kahn:

- Convolutional neural networks: residual, recurrent, vanilla...

Goals for this week:

- Implement graph convolution networks
- Decorrelate network from selected kinematies

Original Graph Convolutional Networks (GCN)

Propagation rule of layer activations $H^{(l)}$

$$
H^{(l+1)}=\sigma\left(\tilde{D}^{-1} \tilde{A} \tilde{D}^{-1} H^{(l)} W^{(l)}\right)
$$

$$
\begin{array}{r}
H^{(0)}=X \\
\tilde{A}=A+I_{N} \\
\tilde{D}_{i i}=\sum_{j} \tilde{A}_{i j}
\end{array}
$$

$$
\tilde{A}^{N \times N}=A+I=\begin{gathered}
a \\
b \\
c
\end{gathered}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Thomas N. Kipf, Max Welling, Semi-Supervised Classification with Graph Convolutional Networks (ICLR 2017)

Modified GCN

$$
H^{(l+1)}=\sigma\left(H^{l}\left(\tilde{D}^{-1} \tilde{A} \tilde{D}^{-1} W_{1}^{(l)}\right)^{T} W_{2}^{(l)}\right)
$$

Intuition: custom weights for each node, considering neighbors

- Weight vector for every node: W_{1} (size: $N \times F$)
- Multiply by $\tilde{D}^{-1} \tilde{A} \tilde{D}^{-1} \longrightarrow$ weight vector for every node as the average of the vectors of neighboring nodes (output size: $N \times F$ again)
- Transpose and multiply by $W_{2} \longrightarrow$ custom dense layer for each node (W_{2} size: $N \times U$, result size: $F \times U$)
- Multiply by H : transform every node in the previous layer with its own custom layer (H size: $N \times F$, result size: $N \times U$)

Modified Node Aggregation

- Soft attention with weights given by D and values given by $\tanh (E)$
- E, D : Output of dense layers applied independently to the features of each node

$$
h_{i}^{(l+1)}=\sum_{j} \frac{\exp \sum_{k} D_{(j k)}^{(l)}}{\sum_{l} \exp \sum_{k} D_{(j k)}^{(l)}} \tanh E_{j i}^{(l)}
$$

Adapted from: Yujia Li, Richard Zemel, Marc Brockschmidt, Daniel Tarlow, Gated Graph Sequence Neural Networks, ICLR 2016

Features

Green: 'pass'. red: 'fail'
prodTime

energy

PDG

Features II

x, y, z coordinates: Hard to normalize

Architecture

$\mathrm{p}=$ GraphConvolution(128, kernel_regularizer=regularizers.l2(l2_strength))([feature_input, laplacian_input])
p = layers.LeakyReLU()(p)
$\mathrm{p}=$ GraphConvolution(128, kernel_regularizer=regularizers.l2(l2_strength))([p, laplacian_input])
p = layers.LeakyReLU()(p)
p = NodeAggregation(256, kernel_regularizer=regularizers.l2(l2_strength))(p)|
m = layers.Concatenate()([pdg_l, feature_input])
$\mathrm{m}=$ layers.LeakyReLU()(layers.Conv1D(128, 5)(m))
$\mathrm{m}=$ layers.LeakyReLU()(layers.Conv1D(128, 5)(m))
m = layers.LeakyReLU()(layers.Conv1D(128, 5)(m))
$\mathrm{m}=$ layers.GlobalAveragePooling1D()(m)
$\mathrm{l}=$ layers.Concatenate()([m, p])
l = layers.Dropout(0.5)(l)
l = layers.LeakyReLU()(layers.Dense(512, kernel_regularizer=regularizers.l2(l2_strength))(l))
l = layers.LeakyReLU()(layers.Dense(256, kernel_regularizer=regularizers.l2(l2_strength))(l))
l = layers.Dropout(0.3)(l)
$l=$ layers.LeakyReLU()(layers.Dense(128, kernel_regularizer=regularizers.l2(l2_strength))(l))
l = layers.LeakyReLU()(layers.Dense(32, kernel_regularizer=regularizers.l2(l2_strength))(l))
output_layer = layers.Dense(1, activation='sigmoid')(l)

- Class weights
- Early stopping
- Reduce learning rate on plateau
- Model checkpoint - save only best

Architecture

Results

- Train on random subset of 50 k processes
- Test on 40k independent processes

Next steps

- Bias quantification/mitigation
- Hyperparameter optimisation
- Train on large dataset and other skims
- Talk accepted at CHEP2019 (Computing in High Energy Physics) proceedings

Backup

Results (Smaller network)

